

SECOR INTERNATIONAL INCORPORATED

2655 Camino Del Rio N. Suite 302 San Diego, CA 92108 619-296-6195 TEL 619-296-6199 FAX

SITE ASSESSMENT REPORT AND CORRECTIVE ACTION PLAN

Former Chevron Service Station #9-2795 Project No. MTCH.92795.08 6051 El Tordo Rancho Santa Fe, California APN # 266-283-03-00 DEH Case # H36819-002 April 13, 2005

Prepared For Mr. Dana Thurman Chevron Environmental Management Company 6001 Bollinger Canyon Road, K2236 P.O. Box 6012 San Ramon, California 94583-2324

Submitted By SECOR International Incorporated

Prepared By:

Brian C. Londquist Project Scientist

Approved By:

Maurice W. Baron, Jr., P.G #5256.

Senior Project Manager

Prepared By:

ordk (d Clifford R. Pollock, CHG #514 Principal Engineering Geologist

MAUNCE W. BARON

No. 5256

TABLE OF CONTENTS

		TION	
1.1	PURPOSE		1-1
1.2		SERVICES	
2.0		UND INFORMATION	
		RIPTION	
2.2		GROUND	
		Subsurface Soil Assessment	
		Groundwater Conditions Assessment	
		First Human Health Risk Assessment	
•		Second Human Health Risk Assessment and Soil Vapor Survey	
	2.2.5	Subsurface Utility Survey	2-6
		Sensitive Receptor Research	
		Groundwater Utilization Research	
		Water Production Well Records	
		Rancho Santa Fe Golf Club Irrigation Wells	
	2.2.10	Current Site Investigation	2-7
3.0		OLOGIC CONDITIONS	
		SETTING	
	HYDROGEO	LOGIC SETTING	3-1
4.0		SSMENT METHODOLOGY	
4.1		PREPARATION	
	4.1.1	Health and Safety Plan	.4-1
	4.1.2	Drilling Permit	.4-1
	4.1.3	Underground Utility Clearance	4-1
4.2	DRILLING A	ND SOIL SAMPLING	.4-1
		G WELL PURGING AND SAMPLING	
		TERIALS MANAGEMENT	
		SURVEY	
		TESTING PROCEDURES	
4.7		L RESULTS	
		Soil Analytical Results – Drilling	
	4.7.2	Groundwater Sampling Analytical Results	.4-3
		Dissolved Plume Stability Analysis	
5.0	SITE ASSE	SSMENT FINDINGS	5-7
		PROSTRATIGRAPHIC CONDITIONS	
5.2	SOIL ASSES	SSMENT	.5-1
		ATER ASSESSMENT	
5.4		NT OF ADVERSE IMPACTS	
		Water Resources	
		Human Health	
	5.4.3	Fire and Explosion	. ၁-4

TABLE OF CONTENTS (Continued)

5.4.4 Nuisance 5.4.5 Ecological Receptors 5.4.6 Residual Impacts Conclusions 6.0 SITE ASSESSMENT REPORT CONCLUSIONS 7.0 CORRECTIVE ACTION PLAN 7.1 ESTABLISHMENT OF APPLICABLE CLEANUP LEVELS 7.2 REMEDIAL ALTERNATIVES SCREENING 7.3 HIGH VACUUM DUAL-PHASE EXTRACTION 7.4 REMEDIATION BY NATURAL ATTENUATION AND NO FURTHER ACTION 7.5 RECOMMENDED MITIGATION APPROACH 7.6 CONCLUSIONS AND RECOMMENDATIONS 8.0 LIMITATIONS 9.0 REFERENCES	5-4 5-4 3-1 7-1 7-1 7-2 7-2 7-3
TABLES	
Table 1 – Summary of Soil Analytical ResultsDrilling Table 2 – Summary of Groundwater Sample Analytical Results Table 3 – Summary of Beneficial Groundwater and Surface Water Uses Table 4 – Summary of Well Gauging and Elevation Data Table 5 – Estimated Volume of TPH-Impacted Soil Table 6 – Remedial Action Alternatives Technology Screening	
FIGURES Figure 1 – Site Location Map	
Figure 2 – Site Plan and Cross Section Trace Figure 3 – Site Plan Detail Figure 4 – Utility Survey Map Figure 5 – Petroleum Hydrocarbon in Soil Distribution Map Figure 6 – Hydrocarbon Concentrations in Groundwater—May 13, 2004 Figure 7 – TPHg Isoconcentration Map—May 13, 2004 Figure 8 – Benzene Isoconcentration Map—May 13, 2004 Figure 9 – TBA Isoconcentration Map—May 13, 2004 Figure 10 – Groundwater Gradient Map—May 13, 2004 Figure 11 – Hydrocarbon Concentrations in Groundwater— August 2, 2004 Figure 12 – TPHg Isoconcentration Map—August 2, 2004 Figure 13 – Benzene Isoconcentration Map—August 2, 2004 Figure 14 – TBA Isoconcentration Map—August 2, 2004 Figure 15 – pH Iso-unit Map—August 2, 2004 Figure 16 – Groundwater Gradient Map—August 2, 2004 Figure 17 – Hydrocarbon Concentrations in Groundwater— November 4, 2004 Figure 18 – TPHg Isoconcentration Map— November 4, 2004 Figure 19 – Benzene Isoconcentration Map— November 4, 2004 Figure 20 – TBA Isoconcentration Map— November 4, 2004	

TABLE OF CONTENTS (Continued)

Figure 21 - pH Iso-unit Map- November 4, 2004

Figure 22 - Groundwater Gradient Map-November 4, 2004

Figure 23 - Geologic Cross Section A-A'

Figure 24 - Geologic Cross Section B-B'

APPENDICES

- APPENDIX A Edited Boring Logs and Legend and Selected Historical Geologic Cross Sections
- APPENDIX B Drilling Permit
- APPENDIX C Monitoring Well Gauging Logs; Well Purging/Sampling Logs; Well Development Logs
- APPENDIX D Waste Disposal Documentation
- APPENDIX E Wellhead Survey Elevation Report
- APPENDIX F

 Subsurface Soil and Groundwater Laboratory Reports and Chain-of-Custody

 Documentation
- APPENDIX G Benzene and TBA Concentration Versus Time Hydrographs
- APPENDIX H Remedial Alternatives Cost Estimate Spreadsheets

SITE IDENTIFICATION INFORMATION

Address: 6051 El Tordo

Rancho Santa Fe, California

Business: Castle Creek Capitol and Romar Company

APN: 266-283-03-00

DEH Case No.: H36819-002

Property Owner: Rancho Santa Fe National Bank

38325 Highway 190

Springville, California 93265

UST Owner: None

UST Operator: None

Contact Person: Dana Thurman

Responsible Party: Chevron Environmental Management Company

145 South State College Boulevard, Suite 400

Brea, California 92822-2292

1.0 INTRODUCTION

1.1 PURPOSE

The first seven sections of this document present the results of site assessment activities completed by SECOR International, Incorporated (SECOR) at a location hydraulically down gradient from the former Chevron service station (9-2795) located at 6051 El Tordo in Rancho Santa Fe, California (the Site). Section 7.0 presents a Corrective Action Plan (CAP) to address remediation of gasoline-range petroleum hydrocarbon-impacted soil and ground water associated with the Site and the area of impacted ground water adjacent to the Site, the Off Site area. The location of the Site is presented on Figure 1.

The purpose of the site assessment was to further evaluate the lateral extent of hydrocarbon-impacted soil and groundwater down gradient of the Site. Field activities were conducted in accordance with SECOR's *Work Plan to Perform Additional Site Assessment*, dated July 8, 2003 (the Work Plan); and the County of San Diego, Department of Environmental Health, Land and Water Quality Division (LWQD), Site Assessment and Mitigation Program (SAM) Work Plan approval letter, dated August 20, 2003.

1.2 SCOPE OF SERVICES

The following scope of services was performed during the assessment:

- Prepared a site-specific Health and Safety Plan to address potential health and safety hazards at the site during assessment activities;
- Obtained a drilling permit from the LWQD for the advancement of one (1) soil boring and subsequent construction of one (1) groundwater monitoring well;
- Met with utility representatives to identify and mark locations of subsurface utilities;
- Drilled one soil boring (MW-10) to a total depth of approximately 40 feet below ground surface (ft bgs);
- Collected one (1) soil sample from the soil boring location; analyzed the sample for total petroleum hydrocarbons as gasoline (TPHg); benzene, toluene, ethylbenzene and total xylenes (collectively, BTEX); Ethyl tert-Butyl Ether (ETBE), Methyl tertbutyl Ether (MTBE), tert-Butanol (TBA), tert-Amyl Methyl Ether (TAME), and Diisopropyl Ether (DIPE) using United States Environmental Protection Agency (EPA) Method 8260B; (see Table 1);
- Constructed one (1) two-inch (in) diameter groundwater monitoring well in boring MW-10;
- Developed well MW-10; purged 10 groundwater monitoring wells (MW-1 through MW-10); collected representative groundwater samples from each well; and analyzed groundwater samples collected from monitoring wells MW-1 through MW-

- 10 for TPHg, BTEX, MTBE, TBA, DIPE, ETBE, and TAME using EPA Method 8260B; (see Table 2);
- Surveyed the location of the well casing and the elevation of the top of the new well casing to within ± 0.01 foot accuracy relative to mean sea level (MSL) and;
- Prepared this report to include a discussion of site assessment field procedures, findings and conclusions; the aforementioned CAP; and a proposed implementation schedule for the recommended remedial alternative.

2.0 BACKGROUND INFORMATION

2.1 SITE DESCRIPTION

The Site is a former Chevron gasoline service station property located on the southeast corner of the intersection of El Tordo Road and La Granada Road in Rancho Santa Fe, California. A Site Plan is presented as Figure 2, and a Site Plan Detail (at 1-inch = 40 feet scale) is presented as Figure 3. The Site currently is occupied by a commercial office building and an associated parking lot. Properties adjacent to the Site, and in the immediate vicinity, are primarily commercial with some residential areas. However, two public schools are located between 750 feet (ft) and 1,100 ft northwest, both hydraulically down gradient, of the Site.

The United States Geological Survey (USGS) Rancho Santa Fe, California 7.5-minute quadrangle topographic map (USGS, 1967; photorevised 1975) indicates the Site is located approximately 230 ft above MSL. The Site is located approximately one mile northwest of the San Dieguito River. Hills rise to elevations greater than 300 ft above MSL to the southwest and northeast of the Site. The Rancho Santa Fe Golf Club is located 1.4 miles (mi) northwest and north of the Site, within a small valley.

2.2 SITE BACKGROUND

2.2.1 Subsurface Soil Assessment

Based on historical research, the Site had an unauthorized release (SAM Number H36819-001) assigned to it, stemming from an environmental investigation associated with a real estate transaction. That case was closed and a subsequent case (SAM Number H36819-002) was opened, and is the case that is being investigated and is discussed within this report.

In January 1997, a Phase I and Limited Phase II Environmental Site Assessment (ESA) was performed for the Site by Geotechnical and Environmental Consultants (Geocon), for the Romar Company (Romar) of Kansas City Missouri. The ESA report (February 20, 1997) indicates that records and databases accessed during the ESA show that the Site was an operating gasoline service station from at least 1960 until 1979. The underground storage tanks (USTs), product piping, dispensers, and waste oil UST were presumably removed during station decommissioning in 1979. Land use subsequently changed to commercial office space with the construction of the current Site building in 1980. Historical release(s) of gasoline to the subsurface at the Site apparently occurred during its use for retail gasoline storage and sales, but apparently the effects of the releases did not impede construction of the existing improvements. Geocon and Alton Geoscience (AG) defined the release(s) to the soil that were limited mainly to the former UST excavation area (Geocon, 1997a).

The limited Phase II portion of the investigation (February 6, 1997) included the drilling of six (6) soil borings (B-1 through B-6) across the Site, focusing on the areas that formerly housed the dispenser islands, the former USTs, the site structure, and the former oil cleanout (Figures 2 and 3). The borings ranged in depth from approximately 8 ft bgs to

approximately 20 ft bgs. Soil samples were collected at approximately 5 ft intervals, and sent for laboratory analysis. TPHg concentrations ranged from below laboratory method detection limit (LMDL) of 1.0 milligrams per kilogram (mg/kg) to 2,300 mg/kg in B-2 at 10 ft bgs. Benzene concentrations ranged from below the LMDL of 5 micrograms per kilogram (μg/kg) to 41,300 μg/kg in B-3 at 20 ft bgs. Total petroleum hydrocarbons, quantified as diesel (TPHd), concentrations ranged from below an LMDL of 10 mg/kg to 424 mg/kg in B-2 at 15 ft bgs. The elevated TPHg, TPHd, and benzene soil concentrations were located in the area where the former UST and dispenser island were reportedly located. It was noted in the ESA report that while soil samples contained hydrocarbons in the diesel range, the chromatogram did not match the pattern for diesel. Soil samples were not analyzed for MTBE (Geocon, 1997a).

Between April 1 and April 3, 1997 Geocon supervised the drilling of six (6) exploratory soil borings (B-7 thru B-9 and MW-1 thru MW-3) across the Site (Figures 2 and 3). Three (3) of the borings were subsequently used to construct monitoring wells (MW-1 thru MW-3). The soil borings ranged in depth from approximately 20 to approximately 53 ft bgs. Soil samples were collected at approximate 5 ft intervals for laboratory analysis. TPHg concentrations ranged from below an LMDL of 1 mg/kg to 4,000 mg/kg in MW-1 at 15 ft bgs. Benzene concentrations ranged from below an LMDL of 50 μg/kg to 15,000 μg/kg in MW-1 at 15 ft bgs. MTBE was not detected at LMDLs ranging from 100 μg/kg to 200,000 μg/kg in any of the soil samples submitted for laboratory analysis. A Human Health Risk Assessment (HHRA) was also performed by Geocon per Risk-Based Corrective Action (RBCA) ASTM E-1739-95. The HHRA results indicated that the soil impact present beneath the Site would not present a soil vapor hazard to users of the Site. The nearest groundwater production well was located approximately 4,000 ft south-southeast (up gradient) of the Site in the Osuna Valley. The closest water production well to the Site was located approximately 2-1/4 miles down gradient from the Site (Geocon, 1997b).

On June 16 and 17, 1998, AG oversaw the installation of three (3) monitoring wells (MW-4 thru MW-6) at off-site and down gradient locations from the Site and the re-installation of MW-1 (Figures 2 and 3). MW-1 was reinstalled to provide for a longer screen interval. The new wells were installed to approximately 25 ft bgs. Soil samples were collected at approximately 5 ft intervals and submitted for laboratory analysis. TPHg was not detected above an LMDL of 10 mg/kg in any of the soil samples submitted for laboratory analysis. Benzene concentrations ranged from below an LMDL of 50 mg/kg to 0.38 mg/kg in the 25 ft sample collected from MW-5. MTBE, at an LMDL of 35 μ g/kg, was not detected in any of the soil samples submitted for laboratory analysis (Alton Geoscience, 1998).

In October 2000, SECOR met with Mr. Jim Schuck, who is the SAM project manager, to evaluate the closure potential of the Site. The participants agreed that the following activities needed to be completed before the case closure issue could be evaluated: 1) installation and sampling of three additional off-site groundwater monitoring wells; and 2) performance of a soil vapor risk assessment. These activities were completed in 2001 and are described below and in Section 2.2.4 of this report.

On October 24, 2001, SECOR supervised the installation of three (3) monitoring wells (MW-7 through MW-9) at off-site and downgradient locations (Figure 2) from the Site. The new wells were installed to approximately 28 ft bgs. Soil samples were collected at approximate

5 ft intervals and submitted for laboratory analysis. TPHg and benzene were not detected above their respective LMDLs of 10 mg/kg and 0.050 μ g/kg in any of the soil samples submitted for analysis. MTBE (EPA Method 8021B) was detected in two (2) samples submitted for laboratory analysis in MW-7 at 15 ft bgs and MW-8 at 15 ft bgs at 0.041 mg/kg and 0.059 mg/kg, respectively. MTBE concentrations were confirmed using EPA Method 8260B that indicated that MTBE was not detected above the 10 μ g/kg detection limit (SECOR, 2003).

2.2.2 Groundwater Conditions Assessment

According to the State Water Resources Control Board (SWRCB), the Site and the impacted ground water area offsite and downgradient from the Site are located in the Rancho Santa Fe Hydrologic Subarea of the Solana Beach Hydrologic Area within the San Dieguito Hydrologic Unit. According to the SWRCB, ground water within the San Dieguito Hydrologic Unit is produced from alluvium and the La Jolla Formation in the coastal plain section. Irrigation use ratings are mainly inferior because of high electrical conductivity and high chloride ion concentrations. Domestic use ratings are largely inferior because of high total dissolved solids (TDS) and sulfate ion concentrations (Geocon 1997a).

On April 29, 1997, Geocon measured depth to water (DTW) and purged and sampled the three (3) on-site wells, MW-1 thru MW-3. DTW ranged from 15.71 feet below top of casing (bTOC) to 18.68 ft bTOC. The calculated ground water gradient was oriented toward the west at approximately 0.029 feet per foot (ft/ft). TPHg concentrations ranged from 4,700 μg/L (MW-2) to 130,000 μg/L (MW-1). Benzene concentrations ranged from 360 μg/L (MW-2) to 18,000 μg/L (MW-1). MTBE was not detected (less than (<) 50 μg/L) in the sample collected from MW-1 and analyzed for MTBE using EPA Method 8240. groundwater information contained in the Geocon report (Geocon, 1997b) indicated that analytical results for salinity from two test wells at the Rancho Santa Fe Golf and Tennis Club (the Golf Club) indicated 2,300 to 2,700 parts per million (ppm) and 2,900 to 4,000 ppm, per conversations with Mr. Pete Smith (associate manager of the Club) and Mr. Tim Barrier (golf course greens keeper at the Golf Club), respectively. Additionally, a conversation with Mr. Larry Newcomb (County of San Diego Department of Environmental Health) indicated that water quality in the Rancho Santa Fe area varied and that TDS in the groundwater ranged from 3,000 ppm to 30,000 ppm (Geocon, 1997b).

On July 9, 1998, groundwater monitoring of wells MW-1 through MW-6 (entailing DTW measurements, purging, and sampling of ground water) was performed. The calculated groundwater gradient was oriented toward the west-northwest at approximately 0.04 ft/ft. TPHg concentrations ranged from below an LMDL of 500 μ g/L to 150,000 μ g/L (MW-1). Benzene concentrations ranged from below an LMDL 2.0 μ g/L to 20,000 μ g/L (MW-1). MTBE concentrations were not detected above an LMDL of 5.0 μ g/L in any of the samples submitted for laboratory analysis (Alton Geoscience, 1998). On March 29, 1999, the Site was incorporated into a quarterly monitoring schedule, and it has generally been sampled on a quarterly basis thereafter.

Historical groundwater physical parameters (specific conductivity, ph, etc.) for monitoring of groundwater quality at the Site indicate that the groundwater has a high TDS content and that an area of low groundwater pH is present in the interior of the groundwater impact

plume. The lowest pH in the plume on May 13, 2004 was 3.5 standard units at well MW-9, while the pH at MW-10 (outside the plume) was 5.9 standard units. On August 2, 2004, the highest pH was 6.0 standard units at MW-10 (outside the plume) and 3.4 standard units at MW-4 (inside the plume). On November 4, 2004, the highest pH was 6.0 standard units at MW-10 (outside the plume) and 3.4 standard units at MW-4 (inside the plume). The Rancho Santa Fe Mobil station (situated 1/3-mile upgradient from the Site) also exhibits low pH in groundwater samples.

TBA has been detected as early as August 8, 2000 (MW-4; Table 2) in the groundwater samples collected from wells at the Site and from wells in the impacted groundwater plume that are off-site (downgradient) of the Site. Analytical results for MTBE analysis have not indicated detectable concentrations of MTBE in the ground water in the area of the suspected release at the Site. Therefore, it appears that the TBA impact to ground water at the Site and downgradient from the Site (offsite) is related to the use of TBA as a fuel oxygenate in gasoline dispensed at the Site prior to the decommissioning of the station:

SECOR believes that the presence of TBA in the impacted ground water at the Site and offsite (downgradient) from the Site does not appear to pose any adverse health risks to humans or to the environment. TBA is not currently listed as a priority contaminant for cleanup. Additionally, ground water in the impacted aquifer is characterized by elevated TDS concentrations and low pH in the groundwater plume associated with the Site vicinity. SECOR further notes that the aquifer is low yielding (well purging records), and that the Santa Fe Irrigation District (SFID) has no current plans to develop the shallow ground water in the vicinity of the Site as a source of drinking water.

2.2.3 First Human Health Risk Assessment

In 1997, Geocon performed a Tier 1 and Tier 2 HHRA for the Site to determine if significant risks to human health existed at that time from the impacted soil and groundwater at the Site. The HHRA was accomplished by following the American Society for Testing and Materials (ASTM) standard for Risk Based Corrective Action (RBCA), <u>ASTM Designation E-1739-95</u>. Based on the health risk calculations, Tier 1 commercial risk-based screening levels (RBSLs) or Tier 2 commercial site specific target levels (SSTLs), for the exposure pathways for inhalation of soil and groundwaters within the on-site structure and inhalation of soil vapors in outdoor air, were not exceeded for the constituents of concern (BTEX). Therefore, it was determined that the petroleum hydrocarbon impacted soil and ground water under the Site did not pose a significant risk to human health.

BTEX concentrations in the subsurface soil exceeded the Tier 2 SSTLs for soil leaching into ground water causing dissolved concentrations of BTEX to possibly exceed Maximum Contaminant Levels (MCLs) and potential ingestion of BTEX impacted water should a water production well be installed at the Site. Based on current and planned future site usage, ground water beneath the Site will not be utilized as a source of drinking water indicating that impact to the ground water did not pose a significant threat to human health (Geocon, 1997b).

2.2.4 Second Human Health Risk Assessment and Soil Vapor Survey

SECOR performed a HHRA modeling to evaluate the potential excess cancer risk posed by subsurface benzene vapor to workers at the commercial office building located on the Site. The risk assessment modeling was performed using benzene vapor concentrations obtained from analyses of soil vapor samples collected by SECOR on October 19, 2001 from six soil vapor probes (HA1 thru HA6) located around the perimeter of the site building. A total of 11 vapor samples were collected from approximately 1 ft bgs and 4.5 ft bgs, with the exception of one sample, HA3-5, that was collected from 5 ft bgs. The soil vapor samples were submitted to an on-site mobile laboratory for analysis of TPHg, BTEX, DIPE, ETBE, TAME, MTBE, and TBA using EPA Method 8260B.

Laboratory analytical results indicated that none of the soil vapor samples contained TPHg, BTEX, DIPE, ETBE, TAME, TBA, or MTBE at concentrations greater than or equal to the respective LMDL.

SECOR used the benzene soil vapor sample analytical data to estimate the potential excess cancer risk to humans resulting from diffusion of benzene vapor (the selected target compound) from hydrocarbon-impacted soil and ground water, through the vadose zone and into the commercial office building that is built on a typical slab-on-grade foundation. The benzene vapor concentrations in the shallowest (1 ft bgs) samples were averaged to derive a single value for running the SAM Vapor Risk Model (November 1999 version; revised December 20, 2000). Where actual analytical concentrations were less than the laboratory detection limit, a detection limit of 1 μ g/L-vapor was used to calculate the average benzene soil vapor concentration.

In accordance with the current and foreseeable future use of the site, conservative SAM commercial/industrial worker exposure criteria were used. The soil vapor migration and risk assessment calculations were performed using the SAM Vapor Risk Assessment Model (November 1999 version; revised December 20, 2000). The calculations were completed using the SAM default and site-specific parameters. Cancer risk calculations using the resulting benzene room concentration (Ci) estimate were performed using equations from EPA Risk Assessment Guidance (RAG) for Superfund Sites (EPA, 1989).

The potential cancer risk to humans from benzene vapor in the Site building was calculated to be 7.75E-08, equating to a cancer probability of approximately 1 in 13,000,000. This calculated potential cancer risk to humans is significantly less than the one-in-one-million (1 in 1,000,000) risk that has been selected by the SAM as an indicator of concern for human health. These results indicate that the benzene dissolved in ground water, both beneath the Site and in the impacted groundwater plume off-site, does not appear to pose a significant threat to human health (SECOR, 2003).

2.2.5 Subsurface Utility Survey

In 1998, AG completed a utility survey of the Site area as part of the Site assessment activities at the site. The utility map includes the locations of sewer, water, telephone, cable television, and electrical lines as well as the locations of overhead lines, transformers, and manholes/utility boxes. Several utility lines were determined to be present, at depths ranging from approximately 3 to 7 ft bgs, in the Site vicinity. Based on the depth and the locations of the utilities and the depth to first water (impacted) at approximately 15 ft bgs, the utility trenches do not appear to provide a conduit for migration of vapor-phase gasoline-range hydrocarbons. A copy of the utility survey map is presented as Figure 4.

2.2.6 Sensitive Receptor Research

In 2002, SECOR conducted a limited sensitive receptor survey (SRS) to collect data concerning the irrigation water supply (agricultural wells) supposedly located at the Golf Club. The research indicated that the identified potential receptors (agricultural wells) can be discounted based on their location and distance from the leading edge of the groundwater plume (SECOR, 2003). Additional findings of the report are discussed below.

2.2.7 Groundwater Utilization Research

The SFID supplies municipal (potable) water to the area of the Site. The SFID purchases a majority of its water (approximately 95 percent) from two San Diego County Water Authority (SDCWA) aqueduct systems. One system delivers water from the Colorado River. The other system delivers water from rivers in the Sierra Nevada Mountain Range and the Sacramento-San Joaquin Delta in Northern California. The remainder of the water distributed by the SFID is purchased from local sources that include rain and snowfall runoff collected in local reservoirs owned and operated by other water agencies. The SFID does not own or lease any water production. Based on previous research, the aquifer is not currently being used for ground water production, and there are no immediate plans to do so based on high levels of salinity and TDS (Geocon, 1997b).

2.2.8 Water Production Well Records

The Site and the impacted groundwater offsite is not located within a designated SDCWA "sensitive aquifer area" according to a Regional Water Quality Control Board (RWQCB) map (SDCWA, 1996) and there are no known water production wells located within a ½-mile radius according to the USGS and California Department of Water Resources (DWR) databases. According to County of San Diego Department of Environmental Health (DEH) records, there are two irrigation water supply wells located at the Rancho Santa Fe Golf Club (downgradient) approximately 1.4 miles northwest of the Site.

2.2.9 Rancho Santa Fe Golf Club Irrigation Wells

SECOR contacted Mr. Tim Barrier, Golf Superintendent for the Golf Club, and arranged to inspect the locations of the two (2) agricultural wells documented in the DEH database and

previously mentioned in the Geocon May 1997 Site Investigation Report. Mr. Barrier indicated that two exploratory soil borings had been drilled in 1991 to evaluate groundwater production capability and quality, but that the borings were never completed as groundwater production wells. Mr. Barrier recalled that as result of poor groundwater quality, primarily due to high TDS and total suspended solids (TSS) content, the boreholes were never cased. Mr. Barrier indicated that the borings had been drilled before he was with the Club and that he would make Mr. Sebastian Figueroa of his staff available for questions during SECOR's visit to the Club. Mr. Barrier indicated that he was unable to locate any records associated with the exploratory boreholes.

The information contained in the Geocon May 1997 report indicated that analytical results for salinity from two test wells at the Club indicated 2,300 to 2,700 ppm and 2,900 to 4,000 ppm, per conversations with Mr. Pete Smith (then associate manager of the Club) and Mr. Tim Barrier (greens keeper at the Club), respectively. Additionally, a conversation with Mr. Larry Newcomb DEH indicated that TDS in the groundwater in the area of Rancho Santa Fe range from 3,000 ppm to 30,000 ppm (Geocon, 1997b). SWRCB information indicates that the groundwater in the area of Rancho Santa Fe contains high TDS and sulfate concentrations.

During SECOR's site visit to the Golf Club (January 17, 2002), Mr. Figueroa indicated that he, over a period of approximately three weeks, had observed the drilling of three borings on the Golf Club property in 1991. Mr. Figueroa provided a tour of the Golf Club grounds that included the location of the three borings. The first boring location was observed in the driveway leading to the golf course maintenance office. Mr. Figueroa pointed out a second boring location on the opposite side of the driveway approximately 40 ft west of the first location. Mr. Figueroa pointed out a third exploratory boring location south of the golf cart path near Hole 11. Additionally, Mr. Figueroa confirmed that there are no existing water production wells at the Golf Club, although he indicated that at one time there was a well located on the edge of the golf course immediately north of the intersection of Mimosa and La Granada. The well was at one time used to irrigate the golf course and to supply the old clubhouse. There are no USGS, DWR, or DEH records associated with the former water supply well Mr. Figueroa alluded to that were accessible to SECOR.

2.2.10 Current Site Investigation

The current site investigation activities include the installation of one (1) off-site and down gradient groundwater monitoring well (MW-10), and the incorporation of the newly installed monitoring well into the groundwater monitoring program. The results of this additional site assessment are included in succeeding sections of this report. Intrusive site investigation results are presented in Section 4.0. Details of the analytical testing program are provided in Section 4.6, and the results of analytical testing are presented in Section 4.7. A summary of the findings of this phase of the investigation are presented in Section 5.0. Conclusions are presented in Section 6.0 regarding the spatial extent (both lateral and vertical) of hydrocarbon-impacted subsurface soil and groundwater. Section 7.0 is a CAP, which supports (in Section 7.6) a recommendation for a "no further action required" determination, based on those conclusions.

3.0 HYDROGEOLOGIC CONDITIONS

3.1 GEOLOGIC SETTING

The Site is located on the western edge of the Peninsular Range Geologic Province of southern California. The Site is underlain by the middle Eocene-age Delmar Formation (Eisenberg, 1983) consisting of dusky yellowish-green, sandy claystone interbedded with medium-gray, coarse-grained sandstones.

The subsurface geology at the off-site drilling location (MW-10) consists successively of concrete and artificial fill from ground surface to approximately 3 ft bgs, silty sand from approximately 3 ft bgs to approximately 8 ft bgs, underlain by well-graded sand to approximately 15 ft bgs, followed by silt to approximately 30 ft bgs, then by well-graded sand from approximately 30 ft bgs to 35 ft bgs, underlain by silty sand to approximately 40 ft bgs, and silt with sand from approximately 40 ft bgs to 41 feet bgs, the maximum depth of exploration. The borehole sample description log for boring MW-10 is presented in Appendix A.

3.2 HYDROGEOLOGIC SETTING

The Site is located within the Rancho Santa Fe Hydrologic Subarea (905.11) of the Solana Beach Hydrologic Area (905.10) of the San Dieguito Hydrologic Unit (905.00), as outlined in the California Regional Water Quality Control Board Basin Plan (CRWQCB, 1996). Groundwater in the Solana Beach Hydrologic Area is designated as having beneficial uses for municipal, agricultural, and industrial purposes, but is not designated as a "sensitive aquifer". An intermittent shallow creek (La Orilla Creek) is present northwest of the Site and bisects the Rancho Santa Fe Golf Course from east to west. Surface water at the subject site generally drains toward the northwest. The beneficial uses for ground water and surface waters in the vicinity of the Site are presented on Table 3.

Evidence of first ground water during drilling in boring MW-10 on April 13, 2004 was encountered at approximately 33.5 ft bgs. However, reported DTW in MW-10 on May 7, 2004 was 26.95 ft bgs suggesting that ground water in the vicinity of MW-10 is confined. DTW in wells MW-1 thru MW-10 ranged from 10.65 to 26.95 ft bTOC on May 13, 2004. The calculated groundwater gradient on May 13, 2004 monitoring event was oriented toward the northwest at a magnitude of 0.085 ft/ft.

DTW measurements in wells MW-1 thru MW-10 on August 2, 2004 ranged from 11.06 to 26.89 ft bTOC. The calculated groundwater gradient on August 2, 2004 was oriented toward the northwest at a magnitude of 0.095 ft/ft.

DTW measurements in wells MW-1 thru MW-10 on November 4, 2004 ranged from 10.75 to 25.04 ft bTOC. The calculated groundwater gradient on November 4, 2004 was oriented toward the northwest at a magnitude of 0.10 ft/ft.

4.0 SITE ASSESSMENT METHODOLOGY

This section presents a description of the field methods and procedures that were used to conduct intrusive investigations of subsurface soil and groundwater conditions at the Site.

4.1 PRE-FIELD PREPARATION

4.1.1 Health and Safety Plan

A site-specific HASP was prepared by SECOR prior to initiation of field activities. On-site personnel were required to review the HASP prior to commencement of the site assessment and were instructed to conduct field activities in accordance with HASP guidelines.

4.1.2 Drilling Permit

Prior to commencing assessment activities, SECOR submitted a permit application and appropriate fees to the LWQD for the installation of one soil boring and subsequent construction of one (1) ground water monitoring well. The LWQD approved the permit request on April 12, 2004. A copy of the approved drilling permit is provided in Appendix B.

4.1.3 Underground Utility Clearance

Prior to drilling activities, the drilling location was marked, in accordance with applicable regulatory requirements and Underground Service Alert (USA) was notified. USA notified local utility companies of the scheduled subsurface investigation and representatives of the potentially affected utilities marked the location of their underground utilities. Additionally, SECOR met with Subsurface Alert, Inc., a private utility locator, to mark underground utilities.

4.2 DRILLING AND SOIL SAMPLING

On April 13, 2004, a SECOR geologist supervised the drilling and sampling of one soil boring (MW-10; Figure 2) and the subsequent construction of monitoring well MW-10 in the borehole. The boring was drilled by WestHazmat Drilling Corp. (WestHazmat) using a CME 75 drilling rig equipped with 8-in outside diameter continuous-flight, hollow-stem augers (HSAs).

During drilling of the MW-10 boring, soil samples were collected at approximate 5-foot depth intervals from 10 to 40 ft bgs. The samples were collected, prepared, and screened for the presence of organic vapors using an OVA. A SECOR geologist logged (described) samples of soil using the visual/manual method for the Unified Soil Classification System (USCS), as prescribed in the ASTM Standard D 2488-93. Edited boring logs are provided in Appendix A. Downhole drilling and sampling equipment was decontaminated prior to use. Soil cuttings generated during drilling activities were placed in 55-gal drums, properly labeled, and left at the Site pending receipt of the results of laboratory analyses and determination of appropriate waste disposal.

4.3 MONITORING WELL PURGING AND SAMPLING

On May 7, 2004 BlaineTech (BT) developed MW-10 by surging the well for 15-minutes prior to purging the well of approximately 33-gals of ground water. During the development temperature, pH, specific conductivity, and turbidity parameters were monitored and recorded. The well development logs for MW-10 are included as Appendix C.

On May 13, 2004, August 2, 2004 and November 4, 2004 DTW was measured in wells MW-1 thru MW-10 using an electronic water level meter. Following gauging, the wells were purged using a submersible pump and sampled in accordance with LWQD guidelines (provided in the 2004 SAM Manual). Based on LWQD guidelines, wells MW-1 thru MW-5 and MW-7 thru MW-10 were characterized as "fast recharging". Approximately 1.5 borehole volumes of water were removed from each well to allow non-stagnant formation water to enter the filter pack and casing. Three water-quality indicators (i.e., specific conductivity, pH, and temperature) were measured repeatedly during purging to assist in evaluating when a sufficient volume of stagnant formation water had been removed from the well.

Groundwater samples were collected from each well in clean disposable bailers and transferred to analysis-specific 40 milliliter (ml) glass vials containing analysis-specific preservatives. Labels were attached to each sample container prior to placement into a pre-cooled (approximately 4° Centigrade) chest. The samples were transported to a California-certified analytical laboratory (Del Mar Analytical of Colton, California) under Chain of Custody protocol for chemical analysis. DTW and well purging and sampling data were recorded on Monitoring Well Gauging Logs and on Well Purging/Sampling Logs. A copy of these logs is provided in Appendix C.

4.4 WASTE MATERIALS MANAGEMENT

As noted in the preceding sections, soil cuttings were stored at the Site in properly labeled 55-gallon United States Department of Transportation (DOT)-approved steel drums. Soil cuttings were profiled using the soil sample analytical results. The soil cuttings were transported by Phillips Services Company (PSC), a CEMC-approved waste transporter, as non-hazardous materials to TPS Technologies, Inc. (TPS) for treatment and/or disposal. Development and purge water was retained in poly-plastic tanks attached to the well development purge truck and transported to the BT facility as non-hazardous waste, where the purge water was bulked and transported by PSC for disposal to US Filter, a CEMC-approved disposal facility for treatment and/or disposal. A copy of the waste manifests and bills of lading are provided in Appendix D.

4.5 WELLHEAD SURVEY

On April 20, 2004, well MW-10 was surveyed by a licensed California surveyor to the specifications of State Senate Bill AB2886. A copy of the survey report is included as Appendix E.

4.6 CHEMICAL TESTING PROCEDURES

One soil sample (MW-10-S-25'), collected on April 13, 2004, during drilling activities, was analyzed by Del Mar Analytical (Del Mar) for TPHg, BTEX, MTBE, DIPE, TBA, ETBE, and TAME using EPA Method 8260B. Groundwater samples from all of the monitoring wells associated with the Site were collected on May 13, 2004 and analyzed by Del Mar for TPHg, BTEX, MTBE, DIPE, TBA, ETBE, and TAME using EPA Method 8260B.

4.7 ANALYTICAL RESULTS

4.7.1 Soil Analytical Results - Drilling

TPHg, BTEX or MTBE concentrations, above the respective constituent LMDLs were reported in the soil sample collected from MW-10 at 25 ft bgs. Analytical results are summarized in Table 1; and TPHg, benzene and MTBE concentration distributions are illustrated on Figure 5. A copy of the laboratory report and chain-of-custody documentation is included in Appendix F.

4.7.2 Groundwater Sampling Analytical Results

Groundwater samples were collected on May 13, 2004 after the installation and development of MW-10. A second groundwater monitoring event, requested by Mr. Jim Shuck of the SAM, prior to the submittal of this report, was performed on August 2, 2004. A third groundwater monitoring event was performed on November 4, 2004. Laboratory analytical results for the previously mentioned monitoring events as well as historical analytical results are summarized on Table 2. A copy of the laboratory report and chain-of-custody documentation for the May 13, 2004 monitoring event is presented in Appendix F.

May 13, 2004 Sampling Event: Groundwater samples were collected from wells MW-1 thru MW-10. TPHg concentrations, ranging from 540 μg/L (MW-2) to 90,000 μg/L (MW-1), were reported above the laboratory detection limit in five of the ten groundwater samples submitted for analysis. The remaining five groundwater samples did not contain TPHg in concentrations at <500 μg/L to <50,000 μg/L. Benzene was detected in eight of the ten groundwater samples at concentrations ranging from 1.5 μg/L (MW-7) to 8,500 μg/L (MW-1). Toluene was detected in eight of the ten groundwater samples, with concentrations ranging from 37,000 μg/L (MW-1) to 3.2 μg/L (MW-7). Ethylbenzene was also detected in eight of the ten groundwater samples, with concentrations ranging from 0.61 μg/L (MW-7) to 3,200 μg/L (MW-1). Total xylenes were detected in eight of ten groundwater samples, with concentrations ranging from 3.5 μg/L (MW-7) to 20,000 μg/L (MW-1). TBA was detected in four of the ten groundwater samples, at concentrations ranging from 66 μg/L (MW-7) to 1,000 μg/L (MW-6). DIPE, ETBE, TAME, and MTBE concentrations were not detected in any of the ten groundwater samples submitted for laboratory analysis.

Groundwater analytical results for TPHg, benzene, MTBE and TBA are presented on Figure 6 (SECOR, 2004a). TPHg and benzene isoconcentration contour maps are presented as Figures 7 and 8, respectively. A TBA isoconcentration contour map is presented as Figure 9. The groundwater gradient was calculated by SECOR to be oriented toward the northwest at a magnitude of approximately 0.085 ft/ft (Figure 10).

August 2, 2004 Sampling Event: A second set of groundwater samples was collected from the monitoring wells associated with the Site. TPHg was detected in eight of the ten wells sampled, ranging from 140 μg/L (MW-7) to 73,000 μg/L (MW-1). Benzene was detected in eight of the ten wells sampled, at concentrations ranging from 4.2 μg/L (MW-7) to 9,600 μg/L (MW-1). Toluene concentrations were detected in eight of the ten wells sampled, at concentrations ranging from 11 μg/L (MW-7) to 32,000 μg/l (MW-1). Ethylbenzene concentrations were detected in eight of the ten wells sampled, ranging from 1.4 μg/L (MW-7) to 3,600 μg/L (MW-1). Total xylenes were detected in eight of ten wells sampled ranging from 7.6 μg/L (MW-7) to 22,000 μg/L (MW-1). TBA was detected in five of the ten wells sampled, at concentrations ranging from 32 μg/L (MW-2) to 680 μg/L (MW-6). MTBE, ETBE, DIPE, and TAME concentrations were not detected above laboratory detection limits in any of the ten wells that were sampled. Groundwater analytical results for TPHg, benzene, MTBE, and TBA are presented on Figure 11. TPHg and benzene isoconcentration contour maps are presented as Figures 12 and 13, respectively. A TBA isoconcentration contour map is presented as Figure 14.

The pH readings for the impacted groundwater plume ranged from 3.4 standard units in MW-4 (interior of the plume) to 6.0 standard units at MW-10 (exterior of the plume). The iso-unit map of pH measurements (Figure 15) indicates an area of lower pH readings present within the interior of the plume. Specific conductivity measurements ranged from 12,200 microsiemens (μ S) to 23,000 μ S, approximately equivalent to 7,686 ppm and 14,490 ppm TDS (Groundwater and Wells, 2nd Edition, 1989, page 92-93). Estimated recharge rates for ground water monitoring wells at the Site ranged from 0.1 gpm to 1.5 gpm. The groundwater gradient was oriented toward the northwest at a magnitude of approximately 0.095 ft/ft (Figure 16).

The groundwater analytical results are summarized on Table 1 of the Third Quarter 2004 groundwater monitoring report for the Site. Analytical results and groundwater purging and sampling data sheets are also presented in the Third Quarter 2004 groundwater monitoring report for the Site, dated October 25, 2004, which was submitted to the SAM under separate cover (SECOR, 2004b).

November 4, 2004 Sampling Event: A third set of groundwater samples was collected from the monitoring wells associated with the Site. TPHg was detected in one of the ten wells at 950 μg/L (MW-2). Benzene was detected in eight of the ten wells sampled, at concentrations ranging from 3.1 μg/L (MW-7) to 8,500 μg/L (MW-1). Toluene was detected in eight of the ten wells sampled, at concentrations ranging from 8.0 μg/L (MW-7) to 38,000 μg/L (MW-1). Ethylbenzene was detected in eight of the ten wells sampled, at concentrations ranging from 1.0 μg/L (MW-7) to 3,000 μg/L (MW-1). Total xylenes were detected in eight of the ten wells sampled, at concentrations ranging from 5.6 μg/L (MW-7) to 18,000 μg/L (MW-1). TBA was detected in three of the ten wells sampled, at concentrations ranging from 57 μg/L (MW-7) to 970 μg/L (MW-6). MTBE, ETBE, DIPE, and TAME concentrations were not detected above laboratory detection limits in any of the ten wells that were sampled. Groundwater analytical results for TPHg, benzene, MTBE, and TBA are presented on Figure 17. TPHg and benzene isoconcentration maps are presented

as Figures 18 and 19, respectively. A TBA isoconcentration contour map is presented as Figure 20.

The pH readings for the impacted groundwater plume ranged from pH readings ranged from 3.4 standard units in MW-4 (interior of the plume) to 6.0 standard units at MW-10 (exterior of the plume). Figure 21 depicts a pH iso-unit map for the November 4, 2004 sampling event. Specific conductivity measurements ranged from 7,270 μ S (MW-5) to 25,800 μ S (MW-4), approximately equivalent to 454 ppm and 16,254 ppm TDS (Groundwater and Wells, 2nd Edition, 1989, page 92-93). Estimated recharge rates for ground water monitoring wells at the Site ranged from 0.4 gpm to 2.6 gpm. The ground water gradient was oriented toward the northwest at a magnitude of approximately 0.10 ft/ft (Figure 22).

The ground water analytical results are summarized on Table 2. Analytical results and groundwater purging and sampling data sheets are also presented in the Fourth Quarter 2004 monitoring report for the Site, dated December 14, 2004, which was submitted to the SAM under separate cover (SECOR, 2004c).

4.7.3 Dissolved Plume Stability Analysis

To assess the stability of the dissolved phase ground water plume, SECOR constructed graphs relating detectable dissolved phase concentrations of TPHg, benzene, and TBA in ground water with time (Appendix G). For purposes of this discussion, the plume is separated into three areas: source wells (MW-1 thru MW-5), cross gradient wells (MW-7 and MW-8), and downgradient wells (MW-6 and MW-9). Well MW-10 is excluded since only three monitoring events have been performed. Based on review of the graphs, it appears that (in the source area of the plume) a general trend is discernable of declining to stable concentrations of TPHg, benzene, and TBA. The cross gradient area of the plume generally indicates declining benzene and TBA concentrations. The downgradient area of the plume indicates increasing benzene and TBA concentrations and stable to increasing TPHg.

An evaluation of dissolved phase concentrations was also performed by SECOR to evaluate the decline in downgradient concentrations of TPHg, benzene and TBA with distance from the source area. TPHg concentrations declined approximately 98.4% over a distance of 152 ft between MW-1 and MW-6. Benzene concentrations declined approximately 97.9% over a distance of 168 ft between MW-1 and MW-9. The percentage decrease in TBA concentrations could not be calculated due to a lack of concentrations exceeding elevated detection limits in the source area of the plume. The most downgradient well, MW-10, is located approximately 248 ft downgradient and 292 ft downgradient and slightly cross gradient from wells MW-6 and MW-9, respectively.

5.0 SITE ASSESSMENT FINDINGS

Based on the results of historical and the current site assessment activities described in Section 3.0 through 6.0, SECOR presents the following findings on site conditions and the impact of hydrocarbon-impacted soil and ground water on sensitive receptors in the site vicinity.

5.1 LOCAL HYDROSTRATIGRAPHIC CONDITIONS

The subsurface stratigraphy at the off-site drilling location (MW-10) consists primarily of concrete and artificial fill from ground surface to approximately 3 ft bgs, silty sand from approximately 3 ft bgs to approximately 8 ft bgs, underlain in turn by well graded sand to approximately 15 ft bgs, by silt to approximately 30 ft bgs, by well graded sand from approximately 30 ft bgs to 35 ft bgs, by silty sand to approximately 40 ft bgs, and by silt with sand from approximately 40 to 41 ft bgs, the maximum depth of exploration. Interpreted lithologic and hydrostratigraphic relationships in subsurface soils across the site are presented on cross sections A - A' and B - B', Figures 23 and 24, respectively. In the absence of a descriptive boring log for monitoring well MW-1, geologic descriptions were interpreted from historic geologic cross sections, included in Appendix A.

On April 14, 2004 ground water was encountered during the drilling of MW-10, between approximately 33 and 34 ft bgs. Reported DTW on May 13, 2004 in MW-10 was 26.95 ft bTOC. The reported DTW for all wells associated with the Site on May 13, 2004 from 10.65 to 26.95 feet bTOC. The difference in the depth to first water and depth to static water (May 13, 2004) in MW-10, approximately 6.55 ft, suggests that ground water locally is confined. SECOR calculated the groundwater flow direction to be toward the northwest at a magnitude of 0.085 ft/ft on May 13, 2004 (Figure 10), 0.095 ft/ft on August 2, 2004 (Figure 16), and 0.10 ft/ft on November 4, 2004 (Figure 22). These groundwater gradient maps were prepared using the surveyed well locations, surveyed wellhead elevations from Table 4, and the May 13, August 2, and November 4, 2004 DTW measurements. Figures 6, 11 and 17 present groundwater concentrations of TPHg, benzene, MTBE, and TBA for the three groundwater sampling events (May 13, 2004; August 2, 2004; and November 4, 2004, respectively).

5.2 SOIL ASSESSMENT

Detectable concentrations of TPHg, BTEX, MTBE, ETBE, TAME, DIPE, or TBA were not found in the 25-ft sample from soil boring MW-10.

Soil sample analytical data from previous assessments indicate that soil containing TPHg concentrations above LMDLs, is present in the vicinity of the former UST excavation and former fuel dispenser islands. Specifically, the impact to soil appears to be present in the vicinity of the suspected release sources and has migrated downward to the soil/water interface ("capillary fringe") and remained there. TPHg concentrations exceeding LMDLs (including a maximum of 4,000 mg/kg in MW-1 at 15 ft bgs) were reported in soil samples collected from soil borings B-2, B-3, B-8 and MW-1 at depths ranging from approximately 10 to 20 ft bgs. This suggests that there is an approximately 10-ft thick hydrocarbonimpacted soil zone in the suspected release area. Outside the suspected release area the

impacted soil zone decreases from 10 ft to approximately 5 ft in thickness from MW-1 to MW-3, a distance of approximately 12 ft. Soil impact in the vadose zone appears to be confined to the suspected release area. TPHg concentrations were less than the detection limits in 60 of 82 soil samples collected and analyzed from the areas investigated during this and previous phases of site investigation work.

Based on the distribution of soil samples indicating TPHg-impacted soil, the vertical extent of TPHg in soil conservatively was estimated to occur from approximately 10 to 20 ft bgs (10-ft thick zone of impact) in the vicinity of the former UST excavation and the fuel dispensers. The rectangular-shaped zone of soil impact has dimensions of approximately 100 ft (length) by 28 ft (width) by 10 ft (thickness).

Based on the area of impact (rectangle), mean soil sample TPHg concentration (764.67 mg/Kg), and a soil plume thickness of 10 ft, SECOR estimates the volume of impacted soil with TPHg concentrations greater than laboratory detection limits, is approximately 726 inplace cubic yards (yd³) (Table 5). Refer to Figures 5, 23, and 24 for graphic depictions of the estimated spatial extent of hydrocarbon-impacted soils remaining in place beneath the Site.

5.3 GROUNDWATER ASSESSMENT

Ground water in the shallow aquifer beneath the Site has been impacted by gasoline-range hydrocarbon constituents, including TPHg, BTEX, and TBA. The presence of TBA in the ground water, despite the general lack of MTBE in the gasoline dispensed prior to the decommissioning of the station and removal of the USTs, is discussed in Section 2.2.2. TBA concentrations have historically been detected in eight of the ten wells, including the most up gradient well MW-2. Results from the August 2, 2004 monitoring event show a minimum TBA concentration of 36 µg/L (MW-2) and a maximum TBA concentration of 680 μg/L (MW-6). Results from the November 4, 2004 monitoring event show a minimum TBA concentration of 57 µg/L (MW-7) and a maximum TBA concentration of 970 µg/L (MW-6). The concentrations of TBA in MW-6 and MW-9 indicate a general increase in TBA concentrations, but SECOR notes that the water table has recently risen to historical high levels (Table 4). The likely reason for the increasing TBA (and BTEX) concentrations in samples from wells MW-6 and MW-7 is smear zone leaching, instead of continued migration of the impacted groundwater plume. Also, the TBA concentrations in samples from the perimeter wells continue to indicate a declining trend in concentrations despite the rising water table. This suggests that TBA in the plume is undergoing dispersion, diffusion, and/or possibly biotransformation. The horizontal limits of the dissolved-phase hydrocarbon plume are defined by wells MW-2 (upgradient), MW-7 (cross gradient), MW-8 (cross gradient) and MW-10 (downgradient). Hydrocarbon-impacted ground water appears to be generally limited to the vicinity of wells MW-1, MW-3, MW-4 and MW-5.

Groundwater samples collected from the four site perimeter wells (MW-2, MW-7, MW-8, and MW-10) contain either low or non-detectable concentrations of dissolved gasoline petroleum hydrocarbons. Therefore, based on groundwater analytical data collected to date, the dissolved-phase hydrocarbon plume appears to be stable and to be limited in horizontal extent to the vicinity of wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, and MW-9.

Detectable dissolved-phase MTBE concentrations, verified using EPA Method 8260, have not been reported (August 2, 2004), at detection limits ranging from <1.0 μ g/L to <400 μ g/L in the groundwater samples collected from all 10 ground water monitoring wells. Similar results were found for the November 4, 2004 groundwater sampling event, with detection limits ranging from <1.0 μ g/L to <500 μ g/L. Although MTBE has not been detected in groundwater samples from the Site since the case was opened, the detection limits for the analyses of groundwater samples collected from the area of the Site with the most elevated TPHg and benzene concentrations are sufficiently high to have masked the remaining untransformed MTBE in the ground water. However, based on these analytical data, MTBE is not considered to be a constituent of concern at the site.

Since the dissolved-phase gasoline plume (i.e., benzene) is associated directly with the residual hydrocarbon-impacted soil within the capillary fringe at the Site, it is not possible to precisely predict the number of years that it will take for the dissolved-phase benzene plume to completely degrade naturally (by aerobic biodegradation). Based on the generally decreasing dissolved-phase benzene concentration trend (see Appendix G), as well as the age (old) and general stability of the plume, the dissolved-phase benzene concentrations would be expected to completely degrade in several decades.

As discussed in Section 2.2.7, the SFID currently does not plan to utilize the ground water beneath the Site as a potable water supply now or in the foreseeable future (extending well beyond the estimated timeframe for the dissolved-phase hydrocarbon constituents to completely degrade via un-enhanced aerobic biodegradation). Therefore, SECOR considers it reasonable to assume that the SFID will not consider the impacted groundwater in the Site vicinity to be a viable potable water source (elevated sulfate, salinity, TDS, and TSS) within the above-mentioned degradation timeframe.

5.4 ASSESSMENT OF ADVERSE IMPACTS

SECOR has evaluated the potential adverse impacts that may result from the residual hydrocarbons in the vadose zone, capillary fringe, and saturated zone beneath and/or downgradient of the Site. Refer to Section 2.2.4 for a discussion of the soil vapor plume, Section 5.2 for the residual hydrocarbon-impacted soils, and Section 5.3 for the dissolved-phase gasoline plume. SECOR notes that residual hydrocarbon-impacted soil was left beneath the base of the UST pit that was excavated during the 1979 UST removal activities; the impacted soil zone is depicted on Figures 5, 23, and 24. Five potential adverse impacts were evaluated: water resources, human health, fire and explosion, nuisance, and ecological receptors.

5.4.1 Water Resources

Refer to Sections 2.2.2 and 2.2.7 for an evaluation of water resources in the Site vicinity. SECOR has identified actual or potential beneficial uses of groundwater resources in the Site vicinity to be municipal, agricultural, and industrial (Table 3). However, the SFID does not currently use the aquifer for groundwater production, and there are no immediate plans to do so based on high levels of salinity and TDS.

5.4.2 Human Health

SECOR performed a HHRA prior to the preparation of the CAP. The only realistic pathways of exposure to human receptors were inhalation of benzene vapors (from shallow-seated hydrocarbon-impacted soil at the site) and direct contact with the buried hydrocarbon-impacted soil by construction workers during future site reconstruction activities. It is unlikely that underground utility maintenance activities would expose construction workers to direct contact with hydrocarbon-impacted soils, because most of these subsurface utilities run along El Tordo and La Granada at burial depths up to 7 feet bgs (refer to Section 2.2.5). The utility trenches are too shallow to provide a conduit for migration of vapor-phase gasoline-range hydrocarbons from the impacted groundwater plume, which is 8 to 12 feet deeper. The discussion of the human health risks that are posed by direct contact are addressed below in Section 5.4.4 as a "nuisance".

5.4.3 Fire and Explosion

Refer to Section 2.2.4 for a discussion of absence of a soil vapor plume emanating from the residual hydrocarbon-impacted soils at the Site. Eleven soil vapor samples were collected at depths of 1 to 5 ft bgs at locations around the perimeter of the Site building; however, none of the vapor samples contained detectable concentrations of TPHg, BTEX, MTBE, DIPE, ETBE, TAME, and TBA. These identified soil vapor concentrations are too low to be considered either a fire or an explosion hazard to either on-site workers or off-site residents.

5.4.4 Nuisance

The term "nuisance" for the purposes of this discussion is equated with future waste management issues associated with residual impacts at the Site. SECOR believes that it is reasonable to assume that any future due diligence assessment of the site will reveal its 20-year history as a service station. SECOR believes that the health of construction workers exposed briefly to hydrocarbon-impacted soil during any future on-site excavation should not be adversely impacted. All excavated soil at the Site should be properly characterized and managed prior to off-site export.

5.4.5 Ecological Receptors

SECOR has identified no known ecological receptors which can be adversely impacted by historic product releases from the site, including the presence of wetlands or other sensitive environmental or ecological receptors.

5.4.6 Residual Impacts Conclusions

- There are no actual or potential adverse impacts to human health from residual hydrocarbon-impacted soil and impacted groundwater, either on site or off site.
- There are actual or potential adverse impacts to the beneficial uses of groundwater resources and surface water resources, either on site or off site; however, SFID does

not currently use the aquifer for groundwater production, and there are no immediate plans to do so based on high levels of salinity and TDS.

- The residual impacts at the Site do not pose a fire or explosion hazard.
- Surficial soils across the site are suspect (e.g., potentially hydrocarbon-impacted) due
 to the site's 20-year history of continuous use as a service station. It would be prudent
 for any future construction contractor to properly characterize and manage any
 excavated soil generated during future site reconstruction.
- There are no sensitive environmental or ecological receptors located within the Site vicinity.

6.0 SITE ASSESSMENT REPORT CONCLUSIONS

The following bulleted items describe the pertinent conclusions made for consideration of closure of the case for the subject site.

- SECOR concludes that there are no known, ongoing UST-related contaminant release sources associated with the Site. Gasoline products have not been dispensed at the Site since 1979, and the known gasoline UST systems were removed in 1979.
- The gasoline release to the soil at the Site has been adequately characterized. SECOR
 estimates that the volume of TPHg impacted soil at the Site is approximately 726 inplace yd³.
- Hydrocarbon impact to capillary fringe soils, outside the immediate area of the former USTs and dispenser islands, via groundwater transport, is not indicated.
- The most likely source of TBA is releases from the former gasoline products distribution facilities at the former service station. A secondary source of TBA, upgradient from the Site, is not supported by groundwater monitoring data and the results of environmental databases performed by SECOR.
- The presence of MTBE in the gasoline dispensed at the Site, although unlikely because of the timeframe when operations (gasoline dispensing) ceased at the Site, cannot be completely eliminated because the length of time from the latest date of a possible release could permit a complete vapor-phase migration of MTBE in the soil to the ground water, a possible complete transformation of MTBE to TBA within that timeframe, and because of the elevated detection limits for MTBE in the center of the plume could be masking the presence of residual MTBE in the plume.
- Concentrations of dissolved-phase hydrocarbons in the vicinity of the former USTs and dispenser islands indicate a decreasing trend that strongly suggests that the source of hydrocarbon impact to ground water from the soil is decreasing (source depletion).
- The groundwater sample analytical results for the three most recent sampling events (May 13, 2004; August 2, 2004; and November 4, 2004) indicate that the lateral extent of residual hydrocarbon groundwater impact has been adequately defined. The recent increases in BTEX and TBA concentrations in downgradient wells MW-6 and MW-9 are attributed to flushing of the smear zone by historically high water levels. SECOR concludes that the dissolved-phase gasoline plume is generally stable and that the dissolved-phase benzene concentrations are declining and likely will continue to completely degrade with time.
- It is not reasonable that the groundwater resources at the Site would be utilized in a timeframe before the hydrocarbon constituents in the ground water have degraded naturally.

- Recharge rates (calculated from monitoring field data) range 0.01 to 2.6 gpm suggest that the ground water in the impacted aquifer at the Site would not be an economic source of potable water.
- Groundwater quality in the area of the Site is affected by elevated TDS, TSS, and reportedly by elevated chloride and sulfate ion concentrations suggesting that the ground water is not a viable source of potable water. The groundwater quality (salinity TDS) reported (anecdotal) for the Rancho Santa Fe Golf Club exploratory borings and TDS concentrations at the Site appear to be in general agreement.
- Based on previous risk assessments, there is no threat to human health on- or off-site.
- An evaluation of Site data indicates that there is no threat to the beneficial uses of surface water from the unauthorized release.
- Based on research conducted by SECOR and previous consultants, there are no plans, present or historical by potable water supply entities to use the ground water in the impacted aquifer in the future due to high levels of TDS, TSS, and salinity.
- The timeframe that may be required to allow the dissolved-phase gasoline plume, and particularly its dissolved components, to degrade naturally is uncertain. However, SECOR concludes that complete degradation of the hydrocarbon constituents can be achieved by un-enhanced natural biodegradation in several decades. It is unlikely that the high TDS- and TSS-impacted groundwater would be utilized by the SFID as a potable water source before the benzene plume degradation is completed.

7.0 CORRECTIVE ACTION PLAN

This CAP has been prepared In accordance with the California Code of Regulations, Title 23, Division 3, Chapter 16, Article 11. As specified in Article 11, there are three elements that should be included in a CAP. These are: 1) an assessment of the impacts of an unauthorized release from a petroleum UST system to the subsurface; 2) a feasibility study to evaluate alternatives for remediating or mitigating the actual or potential adverse impacts of the unauthorized release; and 3) the establishment of applicable cleanup levels to achieve (for waters having actual or potential beneficial uses) numerical water quality objectives (WQOs). SECOR believes that the preceding six sections of this document (which together comprise the SAR) satisfies the first CAP element. The focus of this section will be the other two CAP elements. Because the impacted aquifer has designated beneficial uses, two remedial alternatives that are capable of achieving the WQO will be evaluated.

This CAP evaluates two viable clean-up strategies to mitigate hydrocarbon-impacted soil and groundwater at the subject Site. The proposed strategies, which are discussed in Sections 7.3 and 7.4 below, are as follows: 1) dual-phase, high vacuum extraction events lasting for 5-days, quarterly for two years; and 2) remediation by natural attenuation, or RNA, due to demonstrated stability of the dissolved-phase gasoline plume. One of these two strategies should be capable of achieving the project objectives.

7.1 ESTABLISHMENT OF APPLICABLE CLEANUP LEVELS

Refer to Table 3 for a discussion of the actual or potential beneficial uses of the impacted aquifer, and to Section 2.2.7 for a discussion of the current and foreseeable future use of the aquifer as a source of water for municipal or agricultural water supply. Despite the facts that the aquifer is not currently being used, and that it is unreasonable to expect that it will be used in the foreseeable future, SECOR understands that the water quality cleanup goals are to be based on the designated actual or potential beneficial uses identified by San Diego RWQCB in its *Water Quality Control Plan, San Diego Basin (9)*, dated 1996. The applicable WQO for dissolved benzene for the impacted aquifer is the State MCL, which is 1.0 µg/L benzene

7.2 REMEDIAL ALTERNATIVES SCREENING

SECOR has performed a remedial alternatives technology screening to eliminate remedial technologies that were unfeasible or unsuitable for use in removing hydrocarbon-impacted soil in the capillary fringe at the Site (Table 6). Dual-phase, high vacuum extraction events was retained for further consideration because it addresses the removal of hydrocarbon-impacted ground water from the subsurface. RNA was also retained for further consideration because it can achieve the WQOs with minimal disruption to current site occupants' commercial enterprises.

The two retained mitigation strategies rely on the lack of any impact to groundwater resources that reasonably can be expected to be used as potable water sources, the presence of an old and stable plume, poor groundwater quality in the area of the Site (high

TDS and low pH), limited water production capability of the affected aquifer, and the lack of any significant risk to human health posed by the release.

7.3 HIGH VACUUM DUAL-PHASE EXTRACTION

Performing multiple high-vacuum dual-phase extraction events, at a frequency of one (1) five-day event, once a quarter for a duration of no more than two years was explored. Based on recent groundwater sample analytical data, impacted groundwater exists beneath the Site. This technology would address removal of the impacted ground water, and also the removal of any soil vapors that may reside in the capillary fringe on-site. The removal of impacted ground water and soil vapors would address and reduce the concentrations beneath the Site, thereby reducing the long-term environmental risk liability of the responsible party (Chevron). However, the amount of removal cannot be accurately calculated, and the benefit of the removal of the hydrocarbons would be minimal. Due to the relatively shallow ground water, the effectiveness of removing soil vapor from the impacted zone would be minimal, and the impact to the local business would be great. Based on these factors, combined with the estimated cost, this remedial technology was not recommended for selection as the preferred remedial alternative.

Remediation to the target clean-up level (i.e., achieval of the WQO for benzene, 1.0 μ g/L, in Site wells) would cost approximately \$230,000 over the 2-year duration (Appendix H).

7.4 REMEDIATION BY NATURAL ATTENUATION AND NO FURTHER ACTION

This strategy would involve remediation by un-enhanced natural attenuation (RNA). SECOR contends that extensive soil/groundwater removal and/or remediation is impracticable and unnecessary, if the purpose is to avert human health risk or adverse impacts to the environment. The results of human health risk assessments by Geocon in 1997 and by SECOR in 2003 (reported in Section 2.2.4 of this report) reveal that the aged gasoline plume poses no significant excess cancer risk to the workers of the on- or off-site buildings. The benzene fraction largely has volatized. Inhalation of benzene vapors from the hydrocarbon-groundwater plume is an incomplete pathway of exposure.

Aerobic biodegradation of dissolved petroleum hydrocarbon constituents is a viable remedial strategy for the dissolved hydrocarbon-impacted groundwater plume. The dissolved hydrocarbon plume in the site vicinity is stable, and soil/groundwater removal and/or remediation is unnecessary to achieve the target groundwater clean-up goal (i.e., achieval of the WQO for benzene, 1.0 μ g/L) within the several decades that RNA will need. During this period, it is unlikely that the impacted aquifer will be used by the SFID as a potable water source. Long-term environmental risk liability to the responsible party would remain until the WQO was achieved. It appears to SECOR that a "No Further Action Required" determination for the site could be made by the SAM. There would be no significant costs associated with this strategy.

For costing purposes, it is assumed that RNA would not need to be monitored to prove that attenuation of the dissolved gasoline constituents is occurring. Consequently, the only costs that would be incurred would be for proper abandonment of the ten ground water monitoring wells. The estimated cost associated with monitoring well abandonment is

\$50,000 (Appendix H), which involves the abandonment of approximately 290 linear feet of well casing.

7.5 RECOMMENDED MITIGATION APPROACH

Based on review of the site assessment and groundwater monitoring data collected to date, the Site appears to meet the eight criteria for administrative closure as a "Low Risk Groundwater Case", as outlined by the San Diego RWQCB's *Interim Guidance Document*, dated April 1, 1996. Preceding sections of this CAP have provided an adequate discussion of the criteria, which are listed below.

- Groundwater has been impacted, the leak has been stopped and on-going sources, including free product (LPH), have been removed or remediated to the extent practicable.
- The site has been adequately characterized.
- The site is located in a Basin without designated municipal and domestic beneficial uses.
- 4. The site is located outside of a sensitive aquifer boundary.
- 5. The dissolved hydrocarbon plume is not migrating.
- 6. No water wells, deeper drinking water aquifers, surface water, or other sensitive receptors are likely to be impacted.
- 7. The site appears to present no significant risk to human health.
- 8. The site appears to present no significant risk to the environment.

SECOR notes that the Item #3 criterion can be met if it is not reasonable that the impacted aquifer is not used for potable water supply during the several decades that it will take for the dissolved benzene plume to aerobically biodegrade. Refer to Sections 2.2.7, 2.2.8, and 2.2.9 for substantiating proof that these claims are valid.

SECOR evaluated two viable remediation alternatives for remediating the hydrocarbon-impacted soil and ground water at the Site (refer to Section 7.3 and Section 7.4) and identified RNA to be the more cost-effective of the approaches. SECOR believes that RNA can realistically be expected to achieve the WQO for dissolved-phase benzene if sufficient time is allowed to elapse while the groundwater plume undergoes un-enhanced aerobic biodegradation. Refer to Section 5.3 for a discussion of the basis for SECOR's conclusion that the plume degradation timeframe of several decades will elapse before the aquifer can be reasonably expected to be used as an actual groundwater source for municipal or agricultural water supply.

7.6 CONCLUSIONS AND RECOMMENDATIONS

Based on SECOR's review of the two retained site mitigation strategies, SECOR concludes that RNA is the preferred mitigation approach for this site. SECOR does recognize the benefits of implementing more aggressive remedial technologies to reduce the hydrocarbon impact beneath the Site, but since the Site is not located within a sensitive aquifer basin, SECOR believes that there is no incremental benefit to human health or water resources from more aggressive remediation. SECOR notes that the continuing presence of residual hydrocarbons and dissolved-phase hydrocarbons in the Site's subsurface presents no credible threat to human health, water resources, or the environment. SECOR recognizes that it would take several decades for the stable dissolved-phase hydrocarbon plume to be fully bioremediated. However, SECOR believes that it is unlikely that there will be any future threats to the human health, water resources, or the environment during this extended RNA period.

SECOR therefore recommends that the dissolved-phase motor fuel hydrocarbon plume be allowed to be reduced by RNA.

Proposed Implementation Schedule

To implement the RNA process and to secure expeditious administrative closure of the subject site (Unauthorized Release # H36819-002) case file, SECOR recommends that the following sequence of events be approved for implementation by the SAM:

- 1) The SAM should review and approve the CAP, and then the LWQD case officer should issue a conditional letter of concurrence for the CAP and for its recommended mitigation approach (e.g., RNA and Well Abandonment).
- 2) The SAM should issue a written authorization to SECOR to implement the public notice process (for concerned residents and commercial businesses) and its 30-day comment period.
- 3) Upon successful completion of the comment period, the SAM case officer should issue a final concurrence letter for the CAP and its selected remedial alternative (e.g., RNA and Well Abandonment).
- 4) SECOR should secure all necessary well abandonment permits, encroachment permits, and traffic control plan permits to enable it to decommission all 10 of the groundwater monitoring wells.
- 5) SECOR should then proceed to properly abandon the ten groundwater monitoring wells in accordance with the approved LWQD well abandonment permit specifications.

8.0 LIMITATIONS

The findings and conclusions contained in this report have been prepared for specific application to this project and have been developed in a manner consistent with that level of care and skill normally exercised by members of the environmental scientific profession currently practicing under similar conditions in the area at the time this investigation was performed. No warranty, either expressed or implied, is made. This report is for the exclusive use of ChevronTexaco and their representatives.

A potential always remains for the presence of the unknown, unidentified, or unforeseen subsurface contamination. Further evidence against such potential site contamination would require additional subsurface exploration and testing.

9.0 REFERENCES

Technical References

California Code of Regulations (CCR), 1998, identification and listing of Hazardous Waste, Criteria for identifying the Characteristics of Hazardous Waste, Characteristic of Toxicity, Title 22, Chapter 11, Article 2, Section 66261.24.

CCR, 1998, Domestic Water Quality and Monitoring Regulations, Primary Standards – Inorganic Chemicals, Maximum Contaminant Levels-Inorganic Chemicals, Title 22, Chapter 15, Article 4, Section 64431.

CCR, 2000, Domestic Water Quality and Monitoring Regulations, Primary Standards, Organic Chemicals, Maximum Contaminant Levels-Organic Compounds, Title 22, Chapter 15, Article 5.5, Section 64444.

CCR, 2003, Corrective Action Requirements, Title 23, Division 3, Chapter 16, Article 11, Section 2720 et seq.

California Regional Water Quality Control Board, San Diego Region (RWQCB), 1996, Water Quality Control Plan, San Diego Basin (9).

County of San Diego, Site Assessment and Mitigation Program (SAM), 2004, 2004 SAM Manual.

County of San Diego Water Authority, 1996. Groundwater Basins Hydrologic Planning Unit Map.

County of San Diego Water Authority, 1996, Map Showing Sensitive Aquifer Boundaries.

County of San Diego Department of Environmental Health, Land and Water Quality Division (LWQD) Work Plan Approval Letter, dated August 20, 2003.

Eisenberg, 1983. Eocene Lithofacies and Geologic History, Northern San Diego County. In On the Manner of Deposition of Eocene Strata in Northern San Diego County, ed. P.L. Abbott. San Diego Association of Geologists, April 13, 1983.

Groundwater and Wells. Second Edition, 1987.

United States Geological Survey, 1967. 7.5-Minute quadrangle topographic map series, Rancho Santa Fe, California Quadrangle, San Diego County, Scale 1"=2,000', Photorevised 1975.

Consultant References

Alton Geoscience, 1998. Site Assessment, Former Chevron Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. November 5.

Geocon Environmental Consultants, Inc., 1997a. Phase I and Limited Phase II Environmental Site Assessment, 6051 El Tordo, Rancho Santa Fe, California. February 20.

Geocon Environmental Consultants, Inc., 1997b. Site Investigation Report, 6051 El Tordo, Rancho Santa Fe, California. May 13.Alton Geoscience, 1998. Site Assessment Former Chevron Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. November 5.

SECOR International Inc., 2003. Revised Site Assessment Report Second Revision, Former Chevron Service Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. January 14.

SECOR International Inc., 2003. Workplan to Perform Additional Site Assessment, Former Chevron Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. July 8.

SECOR International Inc., 2004a. Chevron Semi-Annual Groundwater Monitoring Report, Former Chevron Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. June 21.

SECOR International Inc., 2004b. Chevron Quarterly Groundwater Monitoring Report, Former Chevron Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. October 25.

SECOR International Inc., 2004c. Chevron Quarterly Groundwater Monitoring Report, Former Chevron Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California. December 14.

TABLE 1
SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - DRILLING
Former Chevron 9-2795
6051 El Tordo, Rancho Santa Fe, California
All concentrations reported in milligrams per kilogram (mg/kg).

77					_										_																								
TPHd		<10	₹	<10	01>	<10	128	424	81	<10	358	184	403	<10	~10	<10	<10	<10	√10	<10	<10	<10	<10	<10	-	'	1	-	1	1	1	-	****	•	<u> </u>	Ţ	-	-	<u>'</u>
МТВЕ		1	ŀ	-	-	••		1	1	1	1		-	-	-	1		1	1	1	1	ł	1	1	<0.10	<0.10	<0.10	<0.10	<0.10	<4.0	<4.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
ETBE		-	_			~-			1					-		-	-	-	1	1	-	;	1	-	;	1	ŀ	1	:	1	1	1	ı		,	;	1	1	1
DIPE		-	1				1	***	-	*		***		-				-	-	1	1	1	1	1	1		ŀ	ŀ	ł	1	-	1	1	1	,	ı	1	:	1
ТВА		-			ŀ		-	-	1	-	-		-					***			••	-		1	ł	1	1	ı	1	1	1	:	1	1		1	ı	ı	****
TAME		-	1		1		-			_									1	-	-	1		1	ŧ	ł	1	1	1	1		1		-	;	I	1	1	
×	!	<0.005	0.081	0.120	0.045	090.0	133.00	91.70	26.90	<0.005	105.00	166.00	113.00	0.062	<0.005	<0.005	0.240	<0.005	<0.005	880'0	0.210	<0.005	<0.005	<0.005	<0.15	<0.15	<0.15	0.24	<0.15	18	140	95'0	0.15	5.0	<0.15	<0.15	<0.15	<0.15	<0.15
Ħ		<0.005	7,00.0	0.011	0.0077	90.0	66.20	44.40	12.70	<0.005	31.40	25.30	55.80	600'0	<0.005	<0.005	0.035	<0.005	500.0>	9800'0	0,033	<0.005	<0.005	<0.005	<0.05	<0.05	50.05	<0.05	<0.05	2.3	17	6/0'0	<0.05	0.75	<0.05	<0.05	<0.05	<0.05	<0.05
T		<0.005	0.110	0.200	0.099	090.0	240.30	140.30	44.20	<0.005	5.40	106.70	210.70	0.026	<0.005	<0.005	0.560	<0.005	<0.005	0.110	0.320	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	75'0	<0.05	3.0	100	0.69	0.25	2.1	0.061	<0.05	<0.05	<0.05	<0.05
В		<0.005	0.045	0.09	0.037	900'0	34.60	22.10	8.40	<0.005	2.65	5.80	41.30	<0.005	<0.005	<0.005	0.051	<0.005	<0.005	0.026	0.069	<0.005	<0.005	<0.005	<0.05	<0.05	<0.05	060'0	<0.05	<0.2	7.3	0.11	0.12	060'0	<0.05	<0.05	<0.05	<0.05	<0.05
тРНд		⊽	⊽	⊽	₹	₹	2,300	1,600	550	⊽	1,100	1,100	2,200	⊽	⊽	⊽	1.4	⊽	٧	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	2.1	5,4	620	1,900	4.3	1.6	44	⊽	⊽	⊽	⊽	۲۷
Date Sampled	Activities	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	02/05/97	04/01/97	04/01/97	04/01/97	04/01/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97
Sample Depth (bgs)	Previous Assessment Activities	5	9	15	20	5	10	15	20	5	10	15	20	5	10	15	20	c)	10	15	20	2	S	8	2	9	15	50	5	10	15	50	25	30	35	5	ဓ	15	20
Sample ID	revious A	B-1	B-1	<u>#</u>	B-1	B-2	B-2	B-2	B-2	B-3	B-3	B-3	B-3	B-4	B-4	B-4	B-4	B-5	B-5	B-5	B-5	B-6	B-6	B-6	B-7	B-7	B-7	B-7	B-8	B-8	8-8	B-8	B-8	B-8	8-8	B-9	B-9	B-9	B-9

Page 2 of 3

PNOChewon/Siles/9-2795 El Tordo, Hancho SPReports/CAP drafts/9-2795 3-28-05 (SARCAP tables).xis

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - DRILLING Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California All concentrations reported in milligrams per kilogram (mg/kg).

			_	ī	7	一		1	Ī			1	-7									-			1		- I				-	
1	ם ה	!	1	;	1	1	1	1	1	1	;	1	_		ı	;	1	;	1	1	1	!	!	•	'	1	-	Į	:	1	!	1
ŭ G	3 0 0	<0.10	€ 0.10	<200	<200	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<4.0	<0.10	<0.10	<0.10	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035	<0.035
L C	EIBE	1		1	-	ł	1	ı	:			1	ı	1	I	1	ı	1	1	1	ī	1	1	1	;		ı	-	1	1	ŀ	1
1	UIPE	-	****	1	1	1		1	1	-	ŀ	1	1	ı	1	1	•	1	1	1	ı	1	1	1	1	1	1	1	7	****	1	1
	IBA	•		ŧ	-	-		-	:		-	ŀ	ŀ	-	1	:		-	ł	†	ł	1	1	, ,	ŧ	-	1	-	-	1	1	1
	IAME	-	ı	1	1	I	-	-	1			ı	1	1	:	-	1	1	1	1	1	J	•	1	1	-	ļ			-	:	1
,	×	<0.15	0.34	270	140	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	6.8	86.0	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.34
ı	ш	<0.05	0.074	14	50	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	90'0>	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1.0	0.15	<0.05	<0.05	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
1	_	<0.05	0.15	210	68	0.18	0.10	0.22	0.15	0.15	<0.05	<0.05	<0.05	0.12	<0.05	0.13	0.051	90.0	<0.05	0.11	3.1	1.1	0.19	<0.05	<0.050	<0.050	0.22	050.0	<0.050	<0.050	<0.050	76'0
	8	<0.05	<0.05	15	<10	0.065	<0.05	0.081	950.0	<0.05	<0.05	<0.05	<0.05	40.05	<0.05	<0.05	<0.05	0.05	<0.05	<0.05	0.31	0.27	0.094	<0.05	<0.050	<0.050	090'0	<0.050	<0.050	<0.050	<0.050	0.38
	ТРНд	⊽	2.9	4,000	1,300	⊽	⊽	1.2	⊽	1.1	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	⊽	88	7.7	0.1	⊽	운	×10	₽	ح10	₽	×10	ot>	×10
Date	Sampled	04/01/97	04/01/97	04/01/97	04/01/97	04/01/97	04/01/97	04/01/97	04/01/97	04/01/97	04/01/97	04/03/97	04/03/97	04/03/97	04/03/97	04/03/97	04/03/97	04/03/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	04/02/97	06/17/98	06/17/98	06/17/98	06/17/98	06/16/98	06/16/98	06/16/98	06/16/98
Sample	Depth (bgs)	5	10	15	20	25	30	35	40	45	20	22	10	15	20	25	30	35	5	10	15	50	25	30	10	15	20	25	10	15.5	20	25
	Sample ID	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-1	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-2	MW-3	MW-3	MW-3	MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5	MW-5

P:\0Chevron\Sites\9-2795 E) Tordo, Pancho SFReports\CAP drafts\9-2795 3-28-05 (SARCAP tebles).xis

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - DRILLING TABLE 1

6051 El Tordo, Rancho Santa Fe, California All concentrations reported in milligrams per kilogram (mg/kg). Former Chevron 9-2795

i								_		_	_	_	_	_
ТРН	1	-	1	:	}	-	;	1	ŀ	ı	ł	ŀ		;
MTBE	<0.035	<0.035	<0.035	0.041/<0.0050	<0.010	<0.010	0.059/<0.0050	<0.010	<0.010	<0.010	<0.010	<0.010		<0.010
ЕТВЕ		-	ı	<0.0050		*****	<0.0050	1		1	1	-		<0.0050
DIPE	-	-	1	<0.0050			<0.0050	1	-	1	1	-		<0.0050
ТВА		1	1	<0.100			<0.100	ı	-	:		1		<0.0050
TAME		-		0500:0>			<0.0050				-			<0.0050
×	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15		<0.150
ш	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	050.0>		<0.050
т	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	050'0>		<0.050
œ	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050
TPHg	₽	95	ot>	<10	<10 <10	×10	<10	<10	95	<10	0 1>	<10	13/04	<0.100
Date Sampled	06/16/98	06/16/98	06/16/98	10/24/01	10/24/01	10/24/01	10/24/01	10/24/01	10/24/01	10/24/01	10/24/01	10/24/01	ctivities4/	04/13/04
Sample Depth (bgs)	15	20	25	15	25	28	15	25	28	15	25	28	Current Assessment Activities4/13/	25
Sample ID	9-MM	MW-6	MW-6	7-WM	MW-7	MW-7	MW-8	MW-8	MW-8	6-MM	6-MM	6-WW	Current As	MW-10

Notes:

bgs = Below ground surface TPHg = Total petroleum hydrocarbons as gasoline B = Benzene

T = Toluene
E = Ethylbenzene
X = Total xylenes
TAME = t-amyl methyl ether
TBA = t-butyl alcohol
DIPE = Diisopropyl ether
ETBE = Ethyl-t-butyl ether
MTBE = Methyl-t-butyl ether
TPHd = Total petroleum hydrocarbons as diesel
- = Not analyzed

= Below method reporting limit

Table 2
Historic Groundwater Levels and Chemical Analysis Results
Former Chevron Service Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California

																								т	Т	_													_	\neg
TO A fol	(dqq) √gµ hg/L (ppb)	:	ı	ł	1	i	I	ı	I	1	ı	:	ı	ł	1	ı	810	<2000	V-10000	<25000	I	<12000	×10000	12000		I	ŀ	:	:	ŀ	1	l	:	~ 20	\$20	9/	63	75	21	48
TANAT (9)		1	ł	ı	I	l	1	1 .	ı	1	ł	ı	I	ŀ	ı	I	2 20	<400	<2000	<2000	ı	<2500	<2000	<2500		;	ł	ł		ı	ł	ŀ	1	<5.0	2 20	<5.0	22.0	2 .0	<2.5	<2.0
	LIDE (S) LAWE (S) HG/L (ppp)	ı	:	:	:	l	ł	ı	ı	i	i	!	i	1	ı	ł	² 20	<400	<2000	<2000	ı	<2500	<2000	<2500		I	ı	ī	1	ı	1	l	ı	<5.0	<5.0	<5.0	<5.0	€.0	4 .5	42.0
	UIPE [3] μ μg/L (ppb) μ	;	ł	1	1	1	ı	ı	1	1	ļ	ŧ	ı	ł	1	1	· 20	<400	<2000	~ 5000	ł	<2500	<2000	<2500		ł	I	ı	l	ŧ	1	ı	i	<5,0	<5.0 <5.0	<5.0	<5.0	4 5.0	<2.5	<2.0
[6] LOE	Milb∈[3] µg/l (ppb) ⊦	1	1	ı	1	<500	ŀ	t	ł	ı	ì	ı	f	:	ı	ı	کا	<200	<400	7000	I	<500	<400	<500		1	ı	ı	<5,0 <5,0	ı	ı	Q. 7.0	<2.0	o: ∇	۲۰.0 م	۲.0	0.∇	o. ∇	۲. ۲.	4.0
	МІВЕ [2] М µg/I (ppb) р	Q.	R	<10000	~10000 ~1	3100	<10000	ı	;	ı	1	I	ı	1	ļ	I	1	1	·	ı	ı	ŀ	ŀ	1		:	Q.	<400	14	0	Q V	4 0	4.9	ł	Ī	:	1	ŧ	ı	-
		24300	27000	20000	15000	18000	35000	1	ŀ	ł	ŀ	l	l	1	ı	I	18000	20000	20000	21000	1	20000	22000	18000		110	310	320	130	96	320	160	91	86	8	200	120	150	150	100
Ethyl-	oenzene [2] Х] µg/I (ppb) µ	3710	4200	2800	2300	3000	5400	I	1	I	ı	ŀ	l	ı	1	ŀ	2900	3100	47000	3300	ł	3200	3600	3000		180	110	160	49	55	130	29	30	53	22	92	31	44	42	53
3	benzene [2] топепе [2] benzene [2] Xylenes [2] hg/l (ppb) hg/l (ppb) hg/l (ppb) hg/l (ppb)	47600	52000	47000	38000	42000	48000	1	:	ŀ	1	1	!	ı	I	Ī	32000	45000	3100	44000	1	37000	32000	38000		1400	230	220	۲ دز	93	340	170	110	130	120	280	160	180	160	110
1	yenzene [2] Τα μg/l (ppb) μ	18000	20000	20000	19000	19000	18000	Ī	1	1	ï	1	1	1	ł	ı	14000	18000	18000	16000	1	8200	0096	8500		360	200	530	180	140	300	130	9/	98	99	170	19	130	110	71
:	H-g [1]	30000	150000	140000	150000	140000	310000	ŀ	1	1	!	ı	1	1	1	1	130000	150000	140000	150000	ı	00006	73000	<250000		4700	1900	3000	1600	<500	2700	1000	640	099	580	1300	930	006	066	099
	Thickness 1P (feet) µg/		1	1	1	1		Sheen	Sheen	Sheen	Sheen	Sheen	Sheen	Sheen	Sheen	Sheen	1	ı	ı	ł	Trace	ı	1	1		1	1	ı	ı	1	ı	ŀ	[;	1	ŧ	I	ŀ	1	1
	Groundwater T Elevation (Feet)**	217.37	218.12	218.22	218.18	218.17	218.08	218.17	218.69	218.83	218.92	218.95	220,28	220.27	220.37	220.51	220.67	221.15	220,80	220.65	221.16	222.12	222.27	222,42	:	218,68	219.54	218.86	219.34	219.19	219.10	219.34	219,45	219,55	220.04	220.27	221.64	221.87	222.01	222.28
Groundwater	Elevation (feet)*	1	84.40	84.50	84.46	84.45	84,36	84,45	84.97	85,11	85.20	85.23	86.56	86.55	86.65	86.79	220.67	221.15	220.80	220.65	221.16	222.12	222.27	222.42		!	85.82	85.14	85.62	85.47	85.38	85.62	85.73	85.83	86.32	86,55	87.92	88.15	88.29	88,56
	DTW (feet)	16.60	15.85	15.75	15.79	15.80	15.89	15.80	15.28	15.14	15,05	15.02	13.69	13.70	13.60	13.46	13.30	12.82	13.17	13.32	12.81	11.85	11.70	11,55		18.68	17.82	18.50	18.02	18.17	18.26	18.02	17.91	17,81	17.32	17.09	15.72	15.49	15.35	15.08
	Date	4/1/97	2/6/2	3/29/99	5/24/99	8/23/99	10/22/99	2/1/00	4/21/00	8/8/00	10/26/00	1/22/01	5/9/01	9/21/01	11/27/01	1/15/02	5/30/02	8/29/02	11/21/02	1/21/03	1/27/04	5/13/04	8/2/04	11/4/04		4/1/97	2/9/98	3/29/99	5/24/99	8/23/99	10/22/99	2/1/00	4/21/00	8/8/00	10/26/00	1/22/01	5/9/01	9/21/01	11/27/01	1/15/02
Well No. and	Elevation (feet)*	MW-1	100.25											_		_	233,97					233.97				MW-2	103.64													

Table 2
Historic Groundwater Levels and Chemical Analysis Results
Former Chevron Service Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California

	_								_		_																	_				_		_								\neg
ТВА [3] µg/L (ppb)	51	180	79	52	4 55	73	35	<25		1	ŀ	i	ŀ	ŀ	ı	ı	ı	<5000	<5000	140	<4000	<1200	<2500	<2500	~ 55	<2500	<2500	<2500	<2500	<500	<620	<2500	1	ı	:	1	ı	ı	ı	2300	066	870
TAME [3] µg/L (ppb)	\$20	<2.0	<5.0	<2.0	<5,0	<5.0	<5.0	<5.0		1	1	1	ł	!	ŀ	ì	ı	<500	<500	₹	<400	√ 100	<200	<200	<5.0	<200	<500	<200	<500	78	<120	×200		1	ŀ	ŀ	I	i	1	o √100	<25 - 25	QQ QQ
ETBE [3] µg/L (ppb)	<5.0	<2.0	<5.0	<2.0	<5.0	<5.0	<5.0	<5.0		1	ŧ	ł	1	ŀ	ŧ	1	ı	<500	<500	₹	<400	√ 100	<200	<200	<5.0	<200	<500	<200	<500	V 7	<120	<500		1	I	1	ı	ı	ı	2100	<25	\$20
DIPE [3] µg/L (ppb)		<2.0	<5.0	<2.0	<5.0	<5.0	<5.0	<5.0		I	1	ł	ı	1	1	ı	1	<500	<500	₹	<400	00 √	4 500	<200	<5.0	~ 500	<500	<200	<500	√	<120	<500	1	: I	1	:	ŧ	1	:	√ 100	<25	\$
MTBE [3] µg/l (ppb)	0.0	0.1	7.0	۸ 0.	ō. 2.0	0. L^	O. ►	V-1.0		ı	l	1	×100	۰ 100	i	<40	×80	~ 100	×100	<2.5	8 9	~ 20	o1 7	×100	4.0	7 00	700	700	√ 100	<20	4 25	V 100	1	1	ı	5	; ।	₽	~	~ 50	<5.0	⁷ 10
MTBE [2] µg/l (ppb)	-	1	1	i	1	1	ı	1		ł	Q N	×10000	1400	490	<4000	<5000	<500	ı	:	ŀ	ŀ	į	1	1	1	1	1	:	1	1	ł	į	CIN	900	250 250	27	<400	4 50	00 V	;	1	1
	1	380	120	73	22	170	110	200		22600	12000	21000	15000	18000	14000	22000	21000	17000	17000	27000	14000	13000	14000	16000	13000	11000	10000	12000	0089	3500	5300	13000	4400	840	540	750	930	1000	2100	2300	770	610
Ethyl- penzene [2] > µg/l_(ppb)l	ı	69	110	4	7.6	32	17	34		3300	1700	3100	2300	2900	2200	3400	3500	2700	2700	4200	2200	2100	2400	2500	2200	1600	7300	1900	1200	640	930	2200	767	<u>8</u> 6	8 6	94	5 6	98	270	280	100	84
Toluene [2] b µg/l (ppb)	1	190	28	69	20	54	49	110		24000	11000	26000	18000	17000	14000	23000	21000	17000	17000	26000	12000	9500	11000	12000	0096	7100	1700	8700	4800	2500	3800	8000	1000	1200	500	940	1300	1300	3000	3300	1100	880
Ethyl- Total Benzene [2] Toluene [2] benzene [2] Xylenes [2] ug/l (ppb) μg/l (ppb) μg/l (ppb)	ı	160	74	40	18	35	49	24		4280	1500	4800	4300	2500	2300	3200	2500	1700	1800	2300	1100	750	980	1300	1500	720	700	1200	760	200	1100	1100	400	004	410	440	620	510	1500	1400	460	380
TPH-g [1] B µg/l (ppb)	8750	2400	890	<500	<500	540	470	950		80000	30000	00006	83000	00089	61000	76000	67000	71000	29000	74000	29000	20000	46000	53000	47000	37000	37000	42000	25000	13000	19000	<50000	5000	5200	4500	4300	9009	5800	9000	15000	4400	3800
LPH Thickness (feet)	1	ì	ı	1	ŀ	ł	ı	1		ı	1	1	ı	1	1	ı	ı	:	1	;	1	ı	ı	1	I	ŀ	1	1	:	•	ŀ	1			!	1	: I	}	ł	I	!	-
Corrected Groundwater Elevation (Feet)**	222.60	222.84	223.90	222.47	223.42	223.52	223.53	224.02		218.07	219.02	218.30	218.70	218.69	218.59	218,53	219.23	219.34	219.53	219.49	220.66	220.85	220.93	221.02	221.48	221.78	221.33	221.17	221.68	222.59	222.29	222.63	04.7 80	60,112	217.61	247.40	917.35	217.19	217.90	218.15	218.31	218.45
Groundwater Elevation (feet)*	222.60	222.84	220.80	222.47	223.42	223.52	223.53	224.02		ı	85.30	84.58	84.98	84.97	84.87	84.81	85.51	85.62	85.81	85.77	86.94	87.13	87.21	87.30	221,48	221.78	221.33	221.17	221.68	222.59	222.29	222.63	04.40	99.50	93.74	65.69	83.64	83.48	84.19	84,44	84.60	84.74
DTW (feet)	14.76	14.52	13.46	14.89	13.94	13,84	13.83	13.34		15.71	14.76	15,48	15.08	15.09	15.19	15.25	14.55	14.44	14,25	14.29	13.12	12,93	12.85	12.76	12.30	12.00	12.45	12.61	12.10	11.19	11,49	11.15	1	15.07	10,70	45.54	15.53	15.77	15.06	14.81	14.65	14.51
Date	5/30/05	8/29/02	11/21/02	1/21/03	1/27/04	5/13/04	8/2/04	11/4/04		4/1/97	2/9/98	3/29/99	5/24/99	8/23/99	10/22/99	2/1/00	4/21/00	00/8/8	10/26/00	1/22/01	5/9/01	9/21/01	11/27/01	1/15/02	5/30/05	8/29/02	11/21/02	1/21/03	1/27/04	5/13/04	8/2/04	11/4/04	70,000	26/6/	5/23/33	00/00/0	10/00/00	0/2/20	4/21/00	8/8/00	10/26/00	1/22/01
Well No. and Elevation (feet)*	237.36	MW-2	continued			237.36				MW-3	100.06														233.78					233.78			1,000	NIVV-4	C7'66							

Table 2
Historic Groundwater Levels and Chemical Analysis Results
Former Chevron Service Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California

														-																			_	_	_	_	_	_				\neg
, ,	1BA [3] µg/L (ppb)	720	800	089	680	790	840	960	750	320	<1000	350	×1000	;	ŀ	1	1	ì	ı	1	<10000	<10000	1	~ 2000	<5000	1	<5000	1300	<5000	<10000	<25000	ŀ	×10000	<5000	<1200	1	;	1	1	ı	1	1
1		ı	<8.0	۲ <u>۰</u>	6 70	<5.0	운	2 20	\ \ \ \	₹ 2	<200	<50	<200		i	ł	į	ı	1	ı	<1000	<1000	ŀ	<500	<400	ŀ	<400	²⁰	<400	<2000	<2000	1	<2000	×1000	<250	1	ŀ	1	ı	i	ı	1.
	ETBE [3] TAME [3] µg/L (ppb) µg/L (ppb)	<50	<8.0	کا	4 2.0	<5.0	ę	2 20	\$	\$2	<200	² 20	<200	1	ŀ	ı	I	1	ł	ı	<1000	<1000	ı	~ 200	<400	ı	<400	2 20	<400	<2000	<2000	!	<2000	×1000	<250		ł	i	;	1	1	I
	DIPE [3] µg/L (ppb)	ı	<8.0	×10	<2.0	<5.0	운	\$2	4 50	4 55	<200	<50	<200 <200	ł	I	1	}	ŧ	ł	1	<1000	<1000	1	<500	<400	ŀ	<400	2 20	<400	~5000 ~5000	~ 5000	l	<2000	×1000	<250		I	1	1	ı	ł	ł
	MTBE [3] µg/l (ppb)	ı	<4.0	<5.0	0. V	<1.0	<5.0	ک	٥ ک	6 5,0	<40	₽:	<40		ı	<5.0	1	:	ı	<200	<200	<200	ı	×100	<200	1	~500 ~500	د 10	<200	<400	~1000 ~1	ı	<400	<200	<50	ŧ	ŀ	ŀ	ŀ	:	1	ı
	MTBE [2] lug/1 (ppb) _1	ı	ŀ	:	1	ı	1	ì	I	I	1	1	1	S	~10000 ~10000	740	ı	<5000	ŀ	<1000	1	!	1	1	ı	ı	ŀ	ı	l	1	1	ı	ı	l		QN	×10	₽ 9	70	₽	٦ م	ح1,0
		ı	430	530	510	680	530	440	520	2100	2400	2200	2200	16000	18000	16000	1	13000	1	18000	18000	19000	ı	12000	8800	1	16000	17000	15000	13000	14000	١.	0066	13000	3100	QN ON	^ 5:	2,3	^ ċ	<1.5	<u>^</u> 5	15
Ethyl-	venzene [2] X µg/l (ppb) µ	1	54	72	20	100	11	200	79	360	400	390	380	2200	2600	2300	ì	1900	•	2900	2700	3100	ı	1900	1400	1	2400	30000	2300	27000	2300	1	1600	2100	260	N ON	<0.50	<0.50	<0.50	<0,50	<0.50	2.5
	Benzene [2] Toluene [2] benzene [2] Xylenes [2] μα/! (ppb) μα/! (ppb) μα/! (ppb) μα/! (ppb)	ı	009	099	640	790	620	29	510	2300	2600	2000	2800	40000	43000	39000	1	31000	ŀ	41000	44000	51000		29000	18000	1	35000	2000	32000	2200	27000	ı	20000	24000	2900	Q	<0.50	<0.50	<0.50	<0.50	<0.50	16
	Benzene [2] T µg/l (ppb)	ı	310	300	260	310	270	200	180	290	370	400	390	11000	15000	14000	I	10000	I	14000	13000	17000	l	9200	6100	i	12000	11000	0066	8500	8400	I	0009	7200	1600	S	<0.50	0.68	<0.50	<0.50	<0.50	2.8
	TPH-g [1] E µg/l (ppb)	Ł	2900	3400	2800	4500	2900	2700	2700	10000	8800	8700	<20000	78000	130000	120000	 	00066	ŧ	110000	140000	130000	ı	97000	00009	ı	94000	110000	110000	76000	88000	I	<50000	26000	<25000	QN	<500	<500	<500	<500	<500	<500
	Thickness (feet)	ı	;	:	:	ı	ł	į	1	ı	ı	ŧ	1		١	1	ŀ	ŧ	I	ı	ı	;	ŀ	Į.	I	ì	1	1	Ī	ı	ł	!	;	1	•		1	ı	I	ŧ	ł	:
Corrected	Groundwater Elevation (Feet)**	219.52	219.54	219.59	219.54	219.96	220.31	219.95	219.78	220.30	221.07	221.16	221.36	918 19	215.02	216.17	; ;	216.16	1	216.57	216,66	216.75		217.95	218,30	1	218.31	218.45	218.83	218.63	218.64	ı	220.02	220.20	221.71	210.35	208.84	209,69	208.74	209.87	209.55	209,53
Groundwater	Elevation (feet)*	85.81	85.83	85.88	85.83	219.96	220.31	219,95	219.78	220.30	221.07	221.16	221.36	95 38	82.55	82.41	- - - -	82.40		82.81	82.90	82.99	ı	84,19	84.54	ı	84.55	218.45	218.83	218.63	218.64	r vehicle	220.02	220.20	221.71	76.62	75.11	75,96	75.01	76.14	75,82	75.80
	DTW (feet)	13.44	13.42	13.37	13.42	13.00	12.65	13.01	13,18	12.66	11.89	11.80	11.60	18.85	8 9	16.60	}	16.61		16.20	16.11	16.02	:	14.82	14.47	ı	14.46	14.32	13.94	14.14	14.13	Blocked by vehicle	12.75	12.57	11.06	17.41	18.92	18.07	19.02	17,89	18.21	18.23
	Date	5/9/01	9/21/01	11/27/01	1/15/02	5/30/05	8/29/02	11/21/02	1/21/03	1/27/04	5/13/04	8/2/04	11/4/04	7/0/00	00/00/6	5/24/99	8/23/99	10/22/99	5/2/00	4/21/00	8/8/00	10/26/00	1/22/01	5/9/01	9/21/01	11/27/01	1/15/02	5/30/05	8/29/02	11/21/02	1/21/03	1/27/04	5/13/04	8/2/04	11/4/04	86/6/2	3/29/99	5/24/99	8/23/99	10/22/99	2/7/00	4/21/00
Well No. and	Elevation (feet)*	MW-4	continued			232.96					232,96			AAAA E	000													232.77					232.77			WW-6	94.03					

Table 2
Historic Groundwater Levels and Chemical Analysis Results
Former Chevron Service Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California

3	ua/L (pob)	200	- 20 - 20	1	<50	-22 -25	- 25	55		- 52 -	41	69	790	0001	680	0/6	2	2 5	3 5	2 9	130	009	98	99	3 52	57		425	<25	~25	~ 25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	~ 25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<25	~ 25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		250	320	370	410	470
			₹	•	v	V	₹	V	V	V	4	Ψ	~	2	Œ i	מ	7			_		. (¢	, ω	4	, 4,	ц,		ľ	V	V	V	V	٧	V	V	V			CN ·	m	י מי	₹ .	4
!	IAME (3) ud/L (ppb)	\$ V	<5.0	1	<5.0	\ \2.0	₹50	<2.0	<5.0	<2.0	<5.0	<2.0	<5.0	² 20	4 25	ÇÇ	ç	9 9) (? ?) (0	<.5.0 5.0	25	<5.0	<5.0		<2.0	<2.0	<5.0	<2.0	<2.0	<2.0	<5.0	<5.0	<5.0	<5.0		<u>V</u>	<u>0</u>	<5.0	<5.0	 ₹
	e i Be [3] TAME [3] ua/L (ppb) ua/L (ppb)	<5.0 <5.0	<5.0	1	<5.0	<2.0	<2.0	4 2.0	<5.0	<2.0	<5.0	<2.0	<5.0	² 20	\$ 5	<50 <50	ç	0.0), f	9	5.0		\$5.0	55.0	<5.0	<5.0		<2.0	<2.0	<5.0	2 .0	<2.0	45°0	<5.0	<5.0	<5.0	<5.0		₽	0	6 5,0	×2.0	00 V30
; ;	UIPE [3]		<5.0	ı	<5.0	<2.0	<2.0	<2.0	<5.0	<2.0	<5.0	<2.0	<5.0	<50	\$	0 2 20	ç	, ć) (9.9	, K		\$ \$ 5.0	\ 100 100 100 100 100 100 100 100 100 10	\$5.0 5.0	<5.0		<2.0	<2.0	<5.0	<2.0	<2.0	~ 2.0	<5.0	<5.0	<5.0	<5.0		ک	×10	√ 20	€ 20	ζ 7
!	MIBE [3]	13.1 0.1 0.1 0.1 0.1	0.12	1	0.	o.f>	۰. 0.	4 .0	<u>۲</u> 0.۲	0. ∠	€.0	۲.0 م	0. V	운	€5.0	۷ <u>۱</u>	7	5 ¢	? ? 7	, ç	, c	7	9 O	7	9 Q	7.0 1.0	2	<1.0 <1.0	o. ⊾	0.∠	0,∠	√ 7.0	۲.0	۷.0	0. V	0.∠	٠. م.0		<5.0	<5.0	V 0.	2,5	<4.0
	MI BE [2] ua/l (nnh)	(add) - 64	1	0.∠	ı	i	1	1	I	ı	ı	ı	i	ı	ŧ	:		I	1		† I	١		1	ı I	I		-	į	ŀ	ł	1	ı	ı	ļ	1	1		1	1	ł	ł	
Total		1	∴.5	2.5	2.1	<u>۸</u> ئز	<u>۸</u> تن	۸ ئ	160	<u>^</u> ₹;	<u>۸</u> ئ	<u>Λ</u> rč	260	680	260	720	G L	00 7	2 2	5 6	ې د د	3 6	7.6	t,	7.6	5.6		<1.5	<u>^</u>	130	<u>^</u> ₹,	29	3,1	۸ ئ	۸.5	<u>^</u>	<1,5		370	250	270	370	38
Ethyl-	penzene [2] ; iin/l (nnh)	1	<0,50	<0.50	<0.50	<0.50	<0.50	<0.50	25	<0.50	<0.50	<0.50	45	110	39	120	9	υ <u>τ</u>	ច ក្	2 0	- œ	0.5	; c	9	2 7	0		<0.50	<0.50	22	<0.50	35	0.62	<0.50	<0.50	<0.50	<0.50		29	45	53	27	51
	Benzene [2] Toluene [2] benzene [2] Xylenes [2] und (nnh) und (nnh) und (nnh)	1	<0.50	0.91	2.5	<0.50	<0.50	<0.50	190	<0.50	<0.50	<0.50	490	1000	380	1200	Ļ	ច ដុ	4 +	5 T	4 π υ α	5.6	S 5	0	, -	. 0		<0.50	<0.50	170	<0.50	4.7	1,4	<0.50	<0,50	<0.50	<0.50		490	390	430	520	7.3
	Senzene [2]	1	<0.50	1.3	1.1	<0.50	<0.50	<0.50	34	<0.50	<0.50	<0,50	62	220	9/	250	c	a c	3 ;	= =	4 ¢	7.5	- 6	- r	6.4	 	5	<0.50	<0,50	31	<0.50	6.7	0.51	<0.50	<0.50	<0,50	<0.50		120	96	86	130	13
i :	TPH-g [1]	1949) 1500 1500	200	<500	<500	<500	<500	<500	800	<500	<500	<500	1800	<5000	1100	<5000	i d	, 00cs	000 1) (4)	300	900	2000	909	440	7500	200	<500	<500	570	<500	<500	<500	<500	<500	×100	<500		1800	1300	4600	1800	<500
LPH	Thickness (feet)	Т	I	:	1	ı	ı	1	ŀ	ı	ı	I	ł	1	ŀ	1		l	i	ŀ	1	l :	1 1		i :	,	;	1	1	I	ı	ŧ	I	l	1	I	1		1	l	I	1	;
Corrected	Groundwater Flovation (Feet)**	200 54	209.64	209.44	209.91	210,45	210.66	210.82	210.92	211.28	211,52	211.57	212.76	213.01	213.17	213.33		216.89	217.13	217.44	217.60	717.71	217.45	210.40	216.97	219.54	70,612	217.75	217.65	218.28	218,45	218.25	218.06	218,39	219.02	218.61	218.92		212.09	212.10	212,04	212.24	212.27
Groundwater	Elevation (feet)*	(leel) 75.81	75.91	75.71	76.18	76.72	76.93	77.09	210.92	211.28	211.52	211.57	212.76	213.01	213.17	213,33		76.53	/6.//	217.44	27.60	217.37	217.45	240.07	218.97	219.54	70'817	84.04	83.94	218.28	218.45	218.25	218,06	218,39	219,02	218.61	218.92		92.06	85.07	212.04	212.24	212.27
	DTW (foot)	(leel)	18.19	18,32	17.85	17.31	17.10	16.94	16.84	16.48	16.24	16.19	15,00	14.75	14.59	14.43		17,33	17.09	16./8	16.62	10.03	16.77	2012	15.25	14,00	4.03	11.92	12.02	11.39	11.22	11,42	11.61	11.28	10.65	11.06	10.75		15.44	15,43	15.49	15,29	15.26
1	Date	OU/a/a			-	9/21/01	11/27/01		2/30/05			1/21/03	1/27/04	5/13/04	8/2/04	11/4/04			1/15/02	5/30/05	8/29/02	1/21/02	1/2//03	1/27/04	5/13/04 6/9/04	**************************************	1/4/04	11/27/01		5/30/05	8/29/02	11/21/02	1/21/03	1/27/04	5/13/04	8/2/04	11/4/04		11/27/01	1/15/02	5/30/02	8/29/02	11/21/02
Well No. and	Elevation	(leer)	continued						227.76					227.76				MW-7	93.86	234.22				07	234.22			MW-8	95,96	229.67					229.67				9-WM	100.50	227.53		

Table 2
Historic Groundwater Levels and Chemical Analysis Results
Former Chevron Service Station 9-2795, 6051 El Tordo, Rancho Santa Fe, California

_		_		_	_		_	_	_	_	\neg	_
	TBA [3]	ng/L (ppb)	110	420	290	630	009		<25	<25	\$2 \$2	
	TAME [3]	ng/L (ppb)	6 2.0	6 5.0	65.0	<50	<50		<5.0	<5.0	<5.0	
	ETBE [3]	μg/L (ppb)	<2.0	<5.0	<5.0	<50	<50	:	<5.0	<5.0	<5.0	
	DIPE [3]	μg/L (ppb)	<2.0	<5.0	<5.0	<50	\$20		<5,0	<5.0	<5.0	
	MTBE [3]	(qdd) I/gri	<1.0	4.0	۸ <u>-</u>	ک	۲ <u>۰</u>		0.Þ	· 0.1>	<1.0	
	MTBE [2]	(qdd) I/Brl	ı	1	ı	1	ı		1	ŧ	1	
Total	Xylenes [2]	(qdd) /brl	86	240	620	550	760		4.5	<u>ہ</u> تن	<1.5	
Ethyl-	enzene [2] >	(qdd) I/bri	15	40	78	87	120		<0.50	<0.50	<0.50	
	Benzene [2] Toluene [2] benzene [2]	(qdd) I/bri (qdd) I/bri	57	400	740	099	970		<0,50	<0.50	<0.50	
:	enzene [2]	(qdd) l/bh	ı	89	220	200	300		<0.50	<0.50	<0.50	
	TPH-a[1] B	(qdd) I/bn	i	1100	1500	1600	<5000		<500	×100	<500	
LPH	SS		;	I	ŀ	1	ı			1	1	
Corrected	Groundwater	Elevation (Feet)**	212.32	213.44	213.91	213.95	214 03		180.80	180.86	182.71	
Groundwater	Flevation	(feet)*	219.39	213.44	213.91	913.05	214.03	20:1	180.80	180.86	182.71	
		(feet)	15.24	14.00	2 2	25.5	2 2 2	20.52	26.05	26.83	25.04	
	Date		1/01/03	1/27/04	5/13/0/	40/c/a	10/0/2	104	E/43/04	to/0/a	11/4/04	
Wall No and	Elevation	(feet)*	MAN O	No retire co	257 63	25,122			NAMA 40	207.75	21:103	

[1] Historically analyzed for Total Petroleum Hydrocarbons as Gasoline by modified EPA method 8015B. Currently analyzed by EPA Method 8260B. [2] Historically analyzed by EPA method 8021. Currently analyzed by EPA Method 8260B. [3] Analyzed by EPA method 8260B. Notes:

TBA = tert-Butyl Alcohol, µg/l = micrograms per liter, ppb = parts per billion, -- = Not Measured, ND = Not Detected, DTW = Depth to Water, TPH = Total Petroleum Hydrocarbons, DIPE = Di Isopropyl Ether. non-measurable thickness of LPH, Trace = Continuous, non-measurable thickness of LPH, MTBE = Methyl tert-Butyl Ether, ETBE = Ethyl tert-Butyl Ether, TAME = tert-Amyl Methyl Ether, feet* = Feet above mean sea level, ** = Groundwater elevation calculated to most recent survey data, LPH= Liquid Phase Hydrocarbons, Sheen = Discontinuous, Definitions:

Monitoring and sampling activities conducted by SECOR after 2/1/02. GEIMS Global ID # T0607399173

Original survey data measured as feet above an arbitrary datum. All groundwater elevation data after 5/30/02 event calculated using April 20, 2004 survey data.

TABLE 3 SUMMARY OF BENEFICIAL GROUNDWATER AND SURFACE WATER USES

Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California

San Dieguito Hydrologic Unit (905.00)* Solana Beach Hydrologic Area (905.10) Rancho Santa Fe Hydrologic Subarea (905.11)

Beneficial Use	Groundwater	Surface Water
Municipal/Domestic Supply	X	+
Agricultrural Supply	Х	0
Industrial Process Supply		
Industrial Service Supply	X	<u> </u>
Groundwater Recharge		
Freshwater Replenishment		
Hydropower Generation		
Water Contact Recreation (REC 1)		X
Non-contact Water Recreation (REC 2)		<u> </u>
Warm Freshwater Habitat		X
Cold Freshwater Habitat		
Wildlife Habitat		X
Biological Habitats of Special Significance		

Notes: *From California State Water Resources Board and Regional Water Quality Control Board, San Diego Region, "Water Quality Control Plan, San Diego Basin (9), 1996".

- x = Existing beneficial use
- o = Potential beneficial use
- + = Excepted from municipal use

Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California

Well No.	Date	SWE	DTW (feet bgs)	LPH Thickness (feet)	GWE (feet)
MW-1	04/01/97	100.25*	16.60	**	83.65*
	07/09/98	100,25*	15.85	1	84.40*
	03/29/99	100.25*	15.75		84.50*
	05/24/99	100.25*	1 5.79		84.46*
	08/23/99	100,25*	15.80		84.45*
	10/22/99	100.25*	15.89		84.36*
	02/07/00	100,25*	15.80	Sheen	84.45*
	04/21/00	100.25*	15.28	Sheen	84.97*
	08/08/00	100.25*	15.14	Sheen	85.11*
	10/26/00	100.25*	15.05	Sheen	85.20*
	01/22/01	100.25*	15.02	Sheen	85.23*
	05/09/01	100.25*	13.69	Sheen	86.56*
	09/21/01	100.25*	13.70	Sheen	86.55*
	11/27/01	100.25*	13,60	Sheen	86.65*
	01/15/02	100.25*	13.46	Sheen	86.79*
	05/30/02	233.97	13.30	Trace	220.67
	08/29/02	233.97	12.82	Trace	221.15
	11/21/02	233.97	13.17	Trace	220.80
	01/21/03	233.97	13.32	Trace	220,65
	01/27/04	233.97	12,81	Trace	221.16
	05/13/04	233.97	11.85		222.12
	08/02/04	233.97	11.70		222.27
	11/04/04	233.97	11.55	<u> </u>	222.42
					D4 00t
MW-2	04/01/97	103.64*	18.68		84.96*
	07/09/98	103.64*	17.82	***	85.82*
	03/29/99	103.64*	18.50		85.14*
	05/24/99	103,64*	18.02	-	85,62*
	08/23/99	103.64*	18.17		85.47*
	10/22/99	103.64*	18.26		85,38*
	02/07/00	103.64*	18.02		85.62*
	04/21/00	103.64*	17.91		85.73*
	08/08/00	103.64*	17.81		85.83*
1	10/26/00	103.64*	17.32		86.32*
	01/22/01	103.64*	17.09		86.55*
	05/09/01	103.64*	15.72		87.92*
	09/21/01	103.64*	15.49		88.15*
	11/27/01	103.64*	15.35		88.29*
	01/15/02	103.64*	15.08		88.56*
	05/30/02	237.36	14.76		222.60
	08/29/02	237.36	14.52		222.84
	11/21/02	237.36	13.46	-	223.90
	01/21/03	237.36	14.89		222.47
	01/27/04	237.36	13.94		223,42
	05/13/04	237.36	13.84		223.52
	08/02/04	237.36	13.83		223,53
			13.34		224.02

Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California

Date	SWE	DTW (feet bgs)	LPH Thickness (feet)	GWE (feet)
04/01/97	100.06*	15.71		84.35*
	100,06*	14.76		85.30*
	100.06*	15.48		84.58*
	100.06*	15.08		84,98*
	100,06*	15.09		84.97*
		15.19		84.87*
	100.06*	15.25		84.81*
	100.06*	14.55		85.51*
	100,06*	14.44		85.62*
i	100.06*	14.25		85.81*
	100.06*	14.29		85.77*
	100.06*	13.12		86.94*
	100,06*	12.93		87.13*
		12.85		87.21*
		12.76		87.30*
		•		221.48
				221.78
*** *		12.45		221.33
				221.17
				221.68
				222.59
· ·				222.29
				222.63
07/09/98	99.25*	15,07		84.18*
	99,25*	15.75		83,50*
		15.54		83.71*
		15.56		83.69*
	99.25*	15.61		83.64*
	99,25*	15.77		83.48*
	· ·	15.06		84.19*
	99.25*	14.81		84.44*
	99,25*	14.65		84.60*
		14,51	2 F	84.74*
		1		85.81*
		1		85.83*
		1		85.88*
	99.25*	13.42		85.83*
		13.00		219.96
		1		220.31
		1		219.95
		1		219.78
		12.66		220.30
		1		221.07
		11.80		221.16
1	232.96	11.60		221.36
	04/01/97 07/09/98 03/29/99 05/24/99 08/23/99 10/22/99 02/07/00 04/21/00 08/08/00 10/26/00 01/22/01 05/09/01 01/21/03 01/27/04 05/13/04 08/08/00 10/26/00 01/22/01 05/09/01 09/21/01 05/09/01 09/21/01 01/15/02 01/21/03 01/27/04 05/13/04 08/02/04 11/04/04	04/01/97	04/01/97	04/01/97

Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California

Well No.	Date	SWE	DTW (feet bgs)	LPH Thickness (feet)	GWE (feet)
MW-5	07/09/98	99.01*	16.65		82.36*
	03/29/99	99.01*	16.80		82.21*
	05/24/99	99.01*	16.60		82.41*
	08/23/99	99.01*			
	10/22/99	99.01*	16.61	**	82.40*
	02/07/00	99.01*			
	04/21/00	99.01*	16.20	[82.81*
			16.11		82.90*
	08/08/00	99.01*	1		82.99*
	10/26/00	99,01*	16.02		62.99
	01/22/01	99.01*			
	05/09/01	99.01*	14.82	-	84.19*
	09/21/01	99.01*	14.47		84.54*
	11/27/01	99.01*			
	01/15/02	99.01*	14.46		84.55*
	05/30/02	232.77	14.32		218.45
	08/29/02	232.77	13.94		218,83
	11/21/02	232.77	14.14		218.63
	01/21/03	232.77	14.13		218.64
	01/27/04	232.77	Blocked by vehicle		_ · · ·
		232.77	12.75		220.02
	05/13/04		12.57		220.20
	08/02/04	232.77			
	11/04/04	232.77	11.06		221.71
MW-6	07/09/98	94.03*	17.41		76.62*
WIVE C	03/29/99	94.03*	18.92		75.11*
	05/24/99	94.03*	18.07		75.96*
	08/23/99	94.03*	19.02		75.01*
		94.03*	17.89		76.14*
	10/22/99		1		75.82*
	02/07/00	94.03*	18.21		
	04/21/00	94.03*	18.23		75.80*
	08/08/00	94.03*	18.22		75.81*
	10/26/00	94.03*	18.12		75.91*
	01/22/01	94.03*	18.32		75.71*
	05/09/01	94.03*	17.85		76.18*
	09/21/01	94.03*	17.31		76.72*
	11/27/01	94.03*	17.10		76,93*
	01/15/02	94.03*	16.94		77.09*
	05/30/02	227.76	16.84		210.92
	08/29/02	227.76	16.48		211.28
	11/21/02	227.76	16.24		211.52
	01/21/03	227.76	16.19		211.57
	01/27/04	227.76	15.00		212.76
		227.76	14.75		213.01
	05/13/04		14.75		213.17
	08/02/04	227.76			213.17
·	11/04/04	227.76	14.43	<u></u>	213.33
MW-7	11/27/01	93.86*	17.33		76.53*
	01/15/02	93.86*	17.09		76.77*
	05/30/02	234.22	16.78		217,44
			16.62		217.60
	08/29/02	234.22			217.57
	11/21/02	234.22	16,65		l
	01/21/03	234.22	16.77		217.45
	01/27/04	234.22	15.79		218.43
	05/13/04	234.22	15.25		218.97
	08/02/04	234.22	14.88		219.34
			14.55		219.67

Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California

Well No.	Date	SWE	DTW (feet bgs)	LPH Thickness ((feet)	GWE (feet)
MW-8	11/27/01	95.96*	11.92		84.04*
	01/15/02	95.96*	12.02		83.94*
	05/30/02	229.67	11.39		218.28
	08/29/02	229.67	11.22		218.45
	11/21/02	229.67	11.42		218.25
	01/21/03	229.67	11.61		218.06
	01/27/04	229.67	11.28		218.39
	05/13/04	229.67	10.65		219.02
	08/02/04	229.67	11.06		218.61
	11/04/04	229.67	10.75		218.92
MW-9	11/27/01	100.50*	15.44		85,06*
	01/15/02	100,50*	15.43		85.07*
	05/30/02	227.53	15.49		212.04
	08/29/02	227.53	15.29		212.24
	11/21/02	227.53	15.26		212.27
	01/21/03	227,53	15.21		212.32
	01/27/04	227.53	14.09		213.44
	05/13/04	2 27.53	13.62		213.91
	08/02/04	227.53	13.58		213.95
	11/04/04	227.53	13,50		214.03
				<u>,</u>	
MW-10	05/13/04	207.75	26.95	_	180.80
	08/02/04	207.75	26.89		180.86
	11/04/04	207.75	25.04		182.71

Notes:

SWE	= Surveyed wellhead elevation
DTW	= Depth to water
BGS	= Below ground surface
LPH	= Liquid-phase hydrocarbons
GWE	= Groundwater Elevation (Feet above mean sea level)
Sheen	= Immeasurable thickness of LPH
Trace	= Less than 0.01 feet thick LPH
Asterisk (*)	= Feet above arbitrary datum elevation

TABLE 5

ESTIMATED VOLUME OF TPH-IMPACTED SOIL Former Chevron Station 9-2795 6051 El Tordo, Rancho Santa Fe, California

	Volume (Of Soil With T Exceeding	Mass of TPH in Soil with TPH Concentrations Exceeding LMDLs (1)				
	Area	Thickness		ume	Mean	Mass	Gallons
Area of Concern	(ft ²)	(ft)	(ft ³)	(yd³)	(mg/kg)	(lbs)	
Estimated Volume				,			
Soil in the vicinity of the former UST Pit and former pump island	2.800	10.0	28,000	1,037.0	765	2,355	361
and former parity formity	T						
TOTALS (soil remaining in place on-site)	2,800	10.0	28,000	1,037	765	2,355	361

Total estimated volume of imapacted soil with TPH concentrations exceeding LMDLs:

1,037 yd³

Total mass of TPH in soil with TPH concentrations exceeding LMDLs:

2,355 lbs. or 361 gallons

Notes:

The mass calculations were made by multiplying the calculated soil volume by the geometric mean TPH concentration by the density of the soil (3,000 pounds per cubic yard assumed). When soil sample data was not available for a particular volume of soil, the geometric mean from the nearest volume of soil was used for mass calculations. Gallons of gasoline calculated by assuming one gallon of gasoline 6.53 pounds.

LMDLs = Laboratory method detection limits

TPH = Total petroleum hydrocarbons

mg/kg = Milligrams per kilogram

ft2 = Square feet

ft = Feet

ft³ = Cubic feet

yd3 = Cubic yards

lbs = Pounds

UST = Underground storage tank

Table 6 Remedial Action Alternatives Technology Screening Former Chevron Station 9-2795 6051 El Tordo, Rancho Santa Fe, California

Mass Removal Method	Retained	Desireable	Comments
Impacted Groundwater Recovery Using Recovery Wells and Stinger- Assisted Vacuum Trucks	Yes	Yes	Reduces mass in saturated zone.
High-Vacuum Dual Phase Extraction (with ex-situ treatment)	Yes	Yes	Generates high applied vacuum throughout the vadose zone impacted soil area. Removes hydrocarbon vapors (for thermal destruction), as well as impacted groundwater (for off-site treatment and disposal).
Natural Attenuation	Yes	Yes	Reduces mass in vadose zone. Well understood but slow. Can achieve target groundwater cleanup goal.

FIGURES

2655 Cemino del Rio North, Suite 302 San Diego, California 619-296-6195/Fax 619-296-6198

FORMER CHEVRON STATION NO. 9-2795 6051 El Tordo Rancho Santa Fe, California JOB NUMBER: DRAWN BY:

MTCH.92795.08

SITE LOCATION MAP

APPROVED BY:

CHECKED BY:

RJO

DATE: 11/25/04

0	40	80
	HORIZONTAL SCALE IN FEET	
0	20	40
_	VERTICAL SCALE IN FEET	

DRAWN BY:	LGH	PREPARED BY:
CHECKED:	7/19/04	
APPROVED:	M BARON	
DATE:	4/29/04	SECOR
JOB No.:	MTCH.92795.08	
CAD FILE:	9-2795XA4-04	2655 Camino del Rio North, Suite 302 San Diego, California

FORMER CHEVRON STATION #9-2795 6051 EL TORDO RANCHO SANTA FE, CALIFORNIA

PREPARED FOR:

FIGURE: 23
GEOLOGIC CROSS SECTION A-A'

INFERRED SOIL CONTACT

APPROXIMATE DEPTH TO GROUNDWATER ON MAY 13, 2004

0.041/<0.0050=ANALYZED FOR MTBE BY EPA 8015B/ 8021B/ ANALYZED FOR MTBE BY EPA 8260B

0	20	40
	HORIZONTAL SCALE IN FEET	
0	10	20
	VERTICAL SCALE IN FEET	

DRAWN BY:	LGH	PREPARED BY:
CHECKED:	7/19/04	
APPROVED:	M BARON	
DATE:	4/29/04	SECOR
JOB No.:	MTCH.92795.08	
CAD FILE:	9-2795XB4-04	2655 Camino del Rio North, Suite 302 San Diego, California

FORMER CHEVRON STATION #9-2795 6051 EL TORDO RANCHO SANTA FE, CALIFORNIA

PREPARED FOR:

GEOLOGIC CROSS SECTION B-B'

FIGURE: 24

APPENDICES

APPENDIX A Edited Boring Logs and Legend and Select Historical Geologic Cross Sections

PROJE(CT NO.	08726-	06-01		. r	
	A.T.			BORING/WELL NO. B 1		
ELL	ETR ETR SIS IS/F IMPL	SAMPLE NO.	ITHOLOGY	DATE DRILLED 2/5/97 WATER LEVEL (ATD)	WELL	HEADSPACE
G "	PEN RE BL	Sc	LIT	EQUIPMENT Limited Access Sup. Beaver DRILLER Pacific	CONSTRUCTION	(PPM)
				SOIL DESCRIPTION		
			, , , , , , , , , , , , , , , , , , , ,	Approximately 5 inches asphalt concrete		!
- 1 -				Very dense, humid, light tan and orange, Silty, fine		
- 2 -				SAND, trace clay (SM)	-	
_ 3 -				-	-	
_ 1 _		İ		-	-	
				<u>-</u>		
<u>-</u> د ا	84	B1-5]	
- 6 -						•
- 7 -					7	
8 -	· 				†	
- 9 -				-	-	
- 10 -	,			Description of 10 feet	_	
i	49	B1-10		-Becomes dense at 10 feet		
- 11 -						
- 12 -	1					
- 13 -	1				7	
14 -	-				-	
- 15 -	>66	B1-15		-Becomes very dense at 15 feet	_	
- 16 -	>00	B1-12		becomes very doubt at 15 1501	_	
17 -			.1.1		_	
					_	
- 18 -]					
19 -	1					
- 20 -	58	B1-20			1	
21 -	"		H	BORING TERMINATED AT 20 FEET -Boring backfilled with bentonite to within 5 inches	-	
- 22 -	-			and capped with asphalt -Groundwater not encountered	-	
- 23 -		Ì		-Groundwater not encountered	_	
		1		·	_	
- 24 -		_	_			
Figur	e A-I,	log of B	oring E	3 1		6051E
CASIN	G ELEVA	TION:		QUANTITY OF FILTER MATERIAL:		
DIAME	ETER & 1	YPE OF	CASING			
	G INTER			WELL SEAL QUANTITY:		
<u> </u>	SCREEN			ANNULUS SEAL/INTERVAL:		
	COVER.	IVAL:		ADDITIVES: WELL DEPTH:		
<u> </u>	COVER:	INTERVA		ENGINEER/GEOLOGIST: ROSS WHIT	Œ	
NOTE: T	HE LOC O	E CHIPCHIPE	ACE CON	VITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOC	ATION AND	IES.
AT THE	DATE IND	ICATED. I	T IS NO	WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCAL	MII UNA ENUITA	

—	FT.	щ)GY	BORING/WELL N	Ю. <u>в 2</u>	-	· · · · · · · · · · · · · · · · · · ·		
ELL FILL T	SIS IS/F	SAMPLE NO.	ITHOLOGY	DATE DRILLED 2/5/97	WATER LEVEL (ATD)	WELL	HEAD SPACE		
a L	PEN	SA I	E	EQUIPMENT Limited Acc	cess Sup. Beaver DRILLER Pacific	CONSTRUCTION	(PPM)		
				SOI	IL DESCRIPTION				
			[1]	Approximately 5 inch	es asphalt concrete	-			
- 1 -				1 	ight tan and reddish-orange, Silty,				
- 3 - - 4 - - 5 -	51	B2-5		·		-			
- 6 - - 7 -	31	BZ-3							
- 8 - - 9 -		·			·	-	5		
- 10 - - 11 -	68	B2-10							
- 12 - - 13 -		<u>.</u>							
- 14 - - 15 - - 16 -	>77	B2-15				_			
- 18 - - 19 -						-			
- 20 - - 21 - - 22 -	42			BORING TE -Boring backfilled and c	RMINATED AT 20 FEET with bentonite to within 5 inches apped with asphalt water not encountered		:		
- 23 - - 24 -									
Figure	e A-2,	log of B	oring E	3 2			6051E		
-	CASING ELEVATION:				QUANTITY OF FILTER MATERIAL:	 .			
DIAMETER & TYPE OF CASING:			CASING		WELL SEAL & INTERVAL:		<u> </u>		
	CASING INTERVAL:				WELL SEAL QUANTITY:				
	SCREEN				ANNULUS SEAL/INTERVAL: ADDITIVES:				
	COVER:	.val:	· · · · · · · · · · · · · · · · · · ·		WELL DEPTH:				
		NTERVA			ENGINEER/GEOLOGIST: ROSS WHITE				

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJECT NO. 08726-06-01

PROJE	CT NO.	08726-	-06-01			
_	A.T.	ш	ЭС	BORING/WELL NO. B 3		T
EET EET STEST	SAMPLE NO.	ITHOLOGY	DATE DRILLED 2/5/97 WATER LEVEL (ATD)	WELL	HEADSPACE	
E E	PENE RES	SA Z		EQUIPMENT Limited Access Sup. Beaver DRILLER Pacific	CONSTRUCTION	
				SOIL DESCRIPTION		
				Approximately 5 inches asphalt concrete	_	
- 1 -				Loose, humid, brown, Silty, fine to medium SAND,	4	
- 2 -				trace clay (SM)	4	
					_	1
		! !				
4 -]					
- 5 -	8	B3-5			-	
- 6 -			H1.11		7	
- 7 -			[[]]		-	
8 -					4	
- 9 -						ļ.
				·		
10 -	47	B3-10		-Becomes dense, tan and coarser grained at 10 feet		
- 11 -					7	
12 -	{		11:1		-	
13 -					-	
- 14 -					4	
- 15 -					_	
	>79	B3-15		-Becomes very dense and fine to medium grained at		
16 -	}	į	[]· [.]			
17 -		}	[[]]]		7	
- 18 -	1			·	1	
- 19 -		}				
- 20 -		D2 20	1-1			
- 21 -	56	B3-20	Ц	BORING TERMINATED AT 20 FEET -Boring backfilled with bentonite to within 5 inches	4	
- 22 -]	1		and capped with asphalt		
		}		-Groundwater not encountered		
23 -					7	
24 -		-	<u> </u>			
Figure	A-3, l	og of Bo	oring E	3		6051E
	3 ELEVA		_ _	QUANTITY OF FILTER MATERIAL:		
DIAME	TER & T	YPE OF (CASING:	WELL SEAL & INTERVAL:		
CASING	3 INTER	VAL:		WELL SEAL QUANTITY:		
	SCREEN:			ANNULUS SEAL/INTERVAL:		
	N INTER	VAL:		ADDITIVES:	<u> </u>	
I WELL	COVER:			WELL DEPTH:		

ENGINEER/GEOLOGIST:

FILTERPACK/INTERVAL:

ROSS WHITE

LKO1F(JI NO.	08/20-	00-01		ר	
r _	RAT. ST. ⁄FT.	щ	OGY	BORING/WELL NOB_4		
DEPTH IN FEET	ETR SIS	SAMPLE NO.	ITHOLOGY	DATE DRILLED 2/5/97 WATER LEVEL (ATD)	WELL	HEADSPACE
0 +	PENET RESI BLWS/	S	LIT	EQUIPMENT Limited Access Sup. Beaver DRILLER Pacific	CONSTRUCTION	(PPM)
				SOIL DESCRIPTION		
				Approximately 5 inches concrete		
- I -				Medium dense, humid, brown, Silty, fine to coarse SAND, trace of clay and fine gravel (SM)		
- 2 -				SAND, trace of clay and time graver (SM)	_	
- 3 -				-		
- 4 -				-		
- 5 -	. 17	B4-5		-	-	
- 6 -						
- 7 -				-	<u> </u>	,
- 8 -				· ·	_	
- 9 -				· · · -		
- 10 -				-		
10 - 11	11	B4-10				
	;			_		,
- 12 -				·		
- 13 -						
- 14 -					7	
- 15 -	39	B4-15	 	-Seepage at approximately 15 feet -Becomes dense at 15 feet		
- 16 -				-Becomes dense at 13 feet	1	
- 17 -			1111		1	
- 18 -				-	1	
- 19 -		ļ Ī			-	
- 20 -	>86	B4-20	1-1-	-Becomes very dense at 20 feet	-	
- 21 -	700	194-2U		BORING TERMINATED AT 20 FEET -Boring backfilled with bentonite to within 5 inches		
- 22 -				and capped with concrete	4	
- 23 -				-Groundwater not encountered	_	
- 24 -				_		
27						

Figure A-4, log of Boring B 4	6051E
CASING ELEVATION:	QUANTITY OF FILTER MATERIAL:
DIAMETER & TYPE OF CASING:	WELL SEAL & INTERVAL:
CASING INTERVAL:	WELL SEAL QUANTITY:
WELL SCREEN:	ANNULUS SEAL/INTERVAL:
SCREEN INTERVAL:	ADDITIVES:
WELL COVER:	WELL DEPTH:
FILTERPACK/INTERVAL:	ENGINEER/GEOLOGIST: ROSS WHITE

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJECT NO. 08726-06-01 BORING/WELL NO. B 5 ITHOLOGY SAMPLE DATE DRILLED 2/5/97_ ___ WATER LEVEL (ATD) _ WELL HEADSPACE CONSTRUCTION (PPM) Limited Access Sup. Beaver DRILLER EQUIPMENT SOIL DESCRIPTION Approximately 4 inches concrete Very dense, humid, tan-orange, Silty, fine to medium SAND, trace of clay (SM) 3 4 5 >58 B5-56 -Pieces of asphalt/concrete in cuttings from 8 to 9 feet 9 10 >59 B5-10 11 12 13 14 15 B5-15 >74 16 17 18 19 20 >54 B5-20

6051E Figure A-5, log of Boring B 5 QUANTITY OF FILTER MATERIAL: CASING ELEVATION: WELL SEAL & INTERVAL: DIAMETER & TYPE OF CASING: CASING INTERVAL: WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL: WELL SCREEN: ADDITIVES: SCREEN INTERVAL: WELL DEPTH: WELL COVER: ENGINEER/GEOLOGIST: ROSS WHITE FILTERPACK/INTERVAL:

BORING TERMINATED AT 20 FEET

-Boring backfilled with bentonite to within 5 inches and capped with concrete

-Groundwater not encountered

21

22

2324

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJE	CT NO.	08726	-06-01			•		
				BORING/WELL NO. B 6		Г''' · · · ·		
DEPTH IN FEET	TRF ISI 7-K	SAMPLE NO.	ם	DATE DRILLED 2/5/97 WATER LEVEL (ATD)	WELL	HEADSPACE		
임·IL	PENETRA RESIST BLWS/FT	SA	ттногосу	EQUIPMENT HAND AUGER DRILLER Geocon	CONSTRUCTION	(PPM)		
	<u>n</u>			SOIL DESCRIPTION				
			12:20					
1 -			1.1.1.	Approximately 4 inches concrete				
	,			Dry to humid, light tan, Silty, fine to medium SAND, trace of clay and coarse gravel (SM)				
2 ~	N/A	B6-2		-		1		
- 3 -	-				7			
- 4 -	1				4			
- 5 -	<u> </u>							
	N/A	B6-5						
- 6 -			$\prod_{i=1}^{n} \{i\}_{i=1}^{n}$					
7 -	1		-		7			
- 8 -	N/A	В6-8	<u> </u>					
- 9 -	1.,		×	BORING TERMINATED AT 8 FEET -Boring backfilled with bentonite to within 5 inches	4			
- 10 -]			and capped with concrete	_			
				-Groundwater not encountered				
- 11 -	1							
- 12 -	1	1			\neg	1		
- 13 -	-				-			
- 14 -	_				-			
- 15 -		}			_			
			1					
- 16 -	1							
17 -	1				1			
- 18 -	-				-			
- 19 -	_			,	_			
- 20 -	_							
1								
- 21 -								
- 22 -								
23 -	7				7			
- 24 -	1		.		7			
Figur	<u> </u> е А-б. 1	log of B	oring E	6		60518		
	G ELEVA			QUANTITY OF FILTER MATERIAL:				
		YPE OF	CASING:	WELL SEAL & INTERVAL:				
·	G INTER			WELL SEAL QUANTITY:				
WELL	SCREEN			ANNULUS SEAL/INTERVAL:				
SCREE	EN INTER	VAL:		ADDITIVES:		·		
WELL	COVER:			WELL DEPTH:				
FILTE	RPACK/I	NTERVA	L:	ENGINEER/GEOLOGIST: ROSS WF	ENGINEER/GEOLOGIST: ROSS WHITE			

FILTERPACK/INTERVAL:

ENGINEER/GEOLOGIST: ROSS WHITE

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND
AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJEC:	ΓNO.	08726-0)6-02		1	
	AT. T.	пi	ЭБҮ	BORING/WELL NO. B 7		
	SISSIS STA	SAMPLE NO.	ITHOLOGY	DATE DRILLED 4/1/97 WATER LEVEL (ATD)	WELL	HEADSPACE
	PENET RESI BLMS	SA	L11	EQUIPMENT IR A-300 DRILLER SDS	CONSTRUCTION	(PPM)
				SOIL DESCRIPTION		
			4.4.	APPROXIMATELY 8 INCHES CONCRETE		
			1//	Dense, humid, tan-brown, Clayey SAND (SC)		
1 2 − 2 − 2 − 2 0<			1//	-	1	
- 3 -			1//	-	1	
<u> </u> 4			1//	_	-	
- 5 -			1//	n vita de la contracto S fort	 	
	49	B7-5 1520	1//	-Becomes light tan and gray at approximately 5 feet		Ì
F 6 7		1320				
7 7			1//			
- 8 -				-	_	
- 9 -			1//	-		
- 10	_		1//	-Becomes more moist and clayey at approximately 10	-	<u> </u>
	30	B7-10 1539	17.1	feet -]	
- 11 -			1//	_		
12						
: 13			1//] ·	1	
- 14 -			-Becomes more sandy and tan-yellow-orange at		-	
15 -	45	D7 16	1//	approximately 14 feet	-	
- 16 -	45	B7-15 1553	1//	-	-	
			1//	·		
17			1///	_		
18 -						
19					1	
20 -	51	B7-20		Very dense, moist, tan, fine to medium SAND with	-	
- 21 -	31	1605	1/2	some clay (SP)	-	
- 22 -				BORING TERMINATED AT APPROXIMATELY 21 FEET	-	
23 -				Boring backfilled with bentonite grout to approximately 6 inches and capped with concrete	_	
				Ground water not encountered		
- 24 -	1	-				
Figure	A-1, log	of Borin	g B 7			6051A
CASING	ELEVAT	ION:		QUANTITY OF FILTER MATERIAL:		<u> </u>
DIAMET	rer & TY	PE OF CA	SING:	WELL SEAL & INTERVAL:		
L	INTERV.	AL:		WELL SEAL QUANTITY:		
	CREEN:		•	ANNULUS SEAL/INTERVAL:	<u></u> .	
	INTERV	AL:		ADDITIVES: WELL DEPTH:		
WELL C		repval.		ENGINEER/GEOLOGIST: ROSS WHITE	· · · · · · · · · · · · · · · · · · ·	

FILTERPACK/INTERVAL:

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJECT	NO.	08726-0	06-02				,		
- !	A. T.	ш	ЭСҮ	BORING/WELL	NO <u>. в 8</u>			1	
D. TH IN FEET	ETRI SIS 45/F	SAMPLE NO.	ITHOLOGY	DATE DRILLED 4/2/97	WATER LEVEL (ATD)			HEADSPACE	
ا ت ت	PENET RESI BLWS	S		EQUIPMENT IR	A-300 DRILLER	SDS	CONSTRUCTION	(PPM)	
				SO	L DESCRIPTION				
				APPROXIMATELY 3 II	NCHES ASPHALT		-	<u> </u>	
- 1 -			1//	CONCRETE	NCHES COARSE GRAVEL				
- 2 -			17/	4	-damp, brown, Clayey, fine				
- 3 -			1///	to medium SAND with tr	race silt (SC)	-	-		
			1//				_		
- 4 -			1//			_		-	
- 5	15	B8-5		·		_			
- 6 -	18	0733	1//	·		<u></u>	1	1	
7 -	10		1//]		_	-		
_ 。_		•	1//			_			
- 8 -	•		1//	-Some interbedded, light from approximately 8 to	tan, fine to medium sand				
- 9 -			1//	Troin approximately 6 to	17 1661	-	1		
- 10 -	17	B8-10	1/2/	·		-	-	·	
- 11 -		0803	1//	December ward dance at a	pproximataly 11 feet	-	-		
1	82			-Becomes very dense at a	pproximately 11 rect	-	_		
- 12 -			1//						
13						-	1		
├ 14 -			1//	-		-	1		
- 15 -			11/			-	_		
1	53	B8-15 0826		}		_	_}		
16	>83	0020	1//						
- 17 -			1/2			-	1		
- 18 -			1///			-			
- 19 -							4		
			1//						
- 20 -	15	B8-20		-Becomes moderately demore clayey at approxim	nse, damp, brown-gray, and				
- 21 -		0845	1//	more clayey at approxim	alery 20 rect	•	1		
- 22 -			1//			-	-		
- 23 -						-			
- 24 -		_							
Figure A	A-2, log	of Borin	g B 8		Contin	ued Next Page		6051A	
CASING ELEVATION:					QUANTITY OF FILTER MATE	ERIAL:			
DIAMET	ER & TY	PE OF CA	SING:		WELL SEAL & INTERVAL:				
CASING	INTERV	4L :			WELL SEAL QUANTITY:			·	
, METT 2C					ANNULUS SEAL/INTERVAL:				
CREEN		AL:			ADDITIVES:				
WELL CO				, , , , , , , , , , , , , , , , , , ,	WELL DEPTH:	DOCC UNITED	,		
FILTERPACK/INTERVAL:					ENGINEER/GEOLOGIST: ROSS WHITE				

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJEC	T NO.	08726-0	06-02			
_	たこと	Ш	ЭСҮ	BORING/WELL NO. B 8		
FEET	ETR/ SIST IS/F	SAMPLE NO.	ITHOLOGY	DATE DRILLED 4/2/97 WATER LEVEL (ATD)	WELL CONSTRUCTION	HEADSPACE (PPM)
ן יי ו	PENET RESI BLWS	SS	LIT	EQUIPMENT IR A-300 DRILLER SDS		
				SOIL DESCRIPTION		
	43	B8-25	1//	-Becomes dense at approximately 25 feet		
26 -		0902	1//			
- 27 -	1		1//			
- 28 -	-	<u> </u>	12/		7	
- 29 -	-		1//		-	
- 30 -		B8-30	1//	-Becomes very dense and more Clayey at		1
- 31 -	68	0920	1//	approximately 30 feet	-	
- 32 -			1//		-	
- 33 -			1//		-	
Ĭ			1/1		4	
- 34 -					4	
35 -	>85	B8-35 0942				
- 36 -		0342		REFUSAL AT APPROXIMATELY 36 FEET	4	
├ 37 -				Boring backfilled with bentonite grout to approximately 6 inches and capped with concrete Groundwater not encountered	_	
38	-			Groundwater not encountered	4	
39	1					
40	-					
- 41	-			·		
- 42	-	1			7	
- 43	4				7	
- 44	-				7	
- 45	-			·	`-	
- 46					-	
- 47					4	
- 48	i				-	
- 49	1				-	
]	-	_		4	
- 50	l				4	
- 51					-	
- 52					4	
- 53					4	
54	- -	1		·		

Figure A-3, log of Boring B 8

6051A

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

PROJEC	<u>T NO.</u>	08726-0	06-02		-	
T L	PT.	Щ	06Y	BORING/WELL NO. B 9	-	1
THE THE	ETR SIS	SAMPLE NO.	ITHOLOGY	DATE DRILLED 4/2/97 WATER LEVEL (ATD) 17.0'	WELL	HEADSPACE
	PENE BLM	ığ.	ij	EQUIPMENT IR A-300 DRILLER SDS	CONSTRUCTION	(PPM)
		'		SOIL DESCRIPTION		
			7.7.7	APPROXIMATELY 4 INCHES ASPHALT	-	
- 1 -	Ì			CONCRETE Dense, humid, brown, Clayey, fine to medium SAND	1	
- 2 -				(SC)	1	
- 3 -			1//	•	-	
- 4 -		e.	1//		1	
- 5 -	35	B9-5		-Becomes light brown-gray at approximately 5 feet	-	
- 6 -] 55	1439			-	
 - 7 -			1//		4	
- 8 -			1/2/	·	-	
- 9 -				D		
			1//	-Becomes gray-tan-orange at approximately 9 feet		
- 10 -	39	B9-10 1447	1//			
- 11 -		1 1 7 7				
- 12 -			1/2/			
13 -	1		1//			
14 -		!	17/			
15 -	57	B9-15	1//	-Becomes very dense and more sandy at approximately	-	
- 16 -	_	1501	1//	15 feet	_	
- 17 -	1			Dense, saturated, tan-orange, fine to medium SAND, trace of clay (SP)	-	
- 18 -	-				-	
 - 19 -	1			-Becomes moist to wet at approximately 19 feet		
- 20 -			<u>,</u>	becomes moint to wet at approximatory 19 foot		
- 21 -	29	B9-20 1512				
- 22 -				BORING TERMINATED AT APPROXIMATELY 21 FEET		
	•			Boring backfilled with bentonite grout to within 6		
- 23 -				inches and capped with concrete. Seepage encountered at approximately 17 feet		
- 24 -		-				
Figure	A-4, log	of Borin	g B 9			6051A
CASINO	ELEVAT	10N:		QUANTITY OF FILTER MATERIAL:	<u> </u>	
		PE OF CA	SING:	WELL SEAL & INTERVAL:		
L	INTERV.	AL:		WELL SEAL QUANTITY: ANNULUS SEAL/INTERVAL:		
	CREEN: N INTERV	AL:	-	ADDITIVES:		
WELL (WELL DEPTH:		
	PACK/INT			ENGINEER/GEOLOGIST: ROSS WHITE		
NOTE: T	HE LOG O	F SUBSURF ICATED. I	ACE COND T IS NOT	ITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCAL WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCAL	ATIONS AND TIM	ES.

DATE DRILLED: June 16, 1998 PROJECT NO.: 60-0348-01 LOGGED BY: D. Swope Former Chevron 9-2795 LOCATION: G. McCue, RG APPROVED BY: 6051 El Tordo DRILLING CO .: West Hazmat Rancho Santa Fe California, California DRILLING METHOD: CME 75 Hollow Stem Auger DEPTH (feet below grade) GRAPHIC LOG WELL BLOWS PER 6 INCHES SAMPLER TYPE: 2.0-inch Split Spoon Sampler CGI (ppm) CONSTRUCTION TPH (ppm) SAMPLE TOTAL DEPTH: 25.0 feet DEPTH TO WATER: 15.8 feet DETAIL CASING ELEVATION: NA uscs DESCRIPTION Utility box with locking Surface Material: Concrete. Hand-augered to 5 feet below grade. сар Cement Drilled out old well, sandpack and grout. Bentonite Grout 4" diameter Schedule 40 PVC blank casing 4" diameter Schedule 40 PVC casing 0.020" slotting - End cap **MW-1 ALTON** LOG OF EXPLORATORY BORING **GEOSCIENCE** PAGE 1 OF 1 San Diego, California 60-0348 Borings 8/27/98 bla

⁄⁄óJEC	T NO.	08726-0	6-02		
	T.	щ	ЭСҮ	BORING/WELL NO. MW 2	
0EPT4 FL.,	ETR	SAMPLE NO.	ІТНОСОСУ	DATE DRILLED 4/3/97 WATER LEVEL (ATD) 19.0' WELL CONSTRUCTION	HEADSPACE (PPM)
□ -	PEN RE BL	S	LIJ	EQUIPMENT IR A-300 DRILLER SDS	(771)
				SOIL DESCRIPTION	
- 1 -				APPROXIMATELY 4 INCHES ASPHALT CONCRETE	
- 2 -			1//	Dense, humid, brown, Clayey, fine to medium SAND O O O O O O O O O O O O O	
- 3 -				- X	
- 4 -				-₩ ₩	×
- 5 -	30	MW2-5	1///		
- 6 -	66	0827		Very dense, humid, tan, fine to medium SAND (SP)	
- 7 -					
- 8 -					
- 9 -			7//	The state of the s	
- 10 -	31 !	MW2-10	1//	Very stiff, humid, brown, Silty CLAY, trace fine sand (CL)	
- 11 -	52	0908		-Becomes orangish-gray-brown and more sandy at approximately 11 feet	
- 12 -				approximately 11 feet	
- '-		<u>.</u>			
- 14 -]		1//		
- 15 - - 16 -	52	MW2-15 0929		-Becomes, light tan, and more clayey at approximately 15 feet	
- 17 -	71				
- 18 -					
- 19 -				-	
- 20 -	30	10000		Dense, saturated, black, medium SAND (SP)	
- 21 -	38	MW2-20 0952			
- 22 -	1			}	
- 23 -	1			Dense, moist, brown, Sandy CLAY (SC)	
- 24 -	1	-			
Figure	A-7, log	of Borin	g MW	2 Continued Next Page	6051A
	ELEVAT			FEET MSL QUANTITY OF FILTER MATERIAL: 6 BAGS	
DIAME	TER & TY	PE OF CA	SING:	2" PVC WELL SEAL & INTERVAL: CONCRETE/0-2 FEET	
CASING	INTERV.	AL: (-15 FE		
⊢ –	CREEN:	0.020		ANNULUS SEAL/INTERVAL: BENTONITE/2-10 FEE	Γ
	N INTERV		-35	ADDITIVES: N/A	
I WEIT	COVER	FLUSH	-MOIN	VT WELL DEPTH: 35 FEET	

FILTERPACK/INTERVAL: #16 SAND/10-36 FEET ENGINEER/GEOLOGIST: NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

ROSS WHITE

BORING/WELL NO. MW 2 DATE DRILLED 4/3/97 WATER LEVEL (ATD) 19.0' WELL HEADSP	PROJEC	T NO.	: 08726-0	06-02			
SOIL DESCRIPTION - 26	_	T • .	1		BORING/WELL NO. MW 2		
SOIL DESCRIPTION - 26	ĒĒT	SIS IS/F	₩ ₩ ₩	1			HEADSPACE
SOIL DESCRIPTION - 26 - > 65 MW2-25 1009	m _ m	PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN	SP	IT		CONSTRUCTION	(PPM)
- 26 - 1009 - Becomes very dense, humid, and more clayey at approximately 27 feet - Street -					SOIL DESCRIPTION		
- 27 - 28 - 29 - 29 - 30 - 69		>65	MW2-25				
28 - 29 - 30 - 69 MW2.30 Very dense, humid, olive green, Silty CLAY, trace of sand (CL) 26 -	-	1009		- -			
28	- 27 -				-Becomes very dense, humid, and more clayey at		
Very dense, humid, olive green, Silry CLAY, trace of sand (CL) 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 30 - 31 - 32 - 33 - 37 - 38 - 39 - 39 - 39 - 30 - 30 - 30 - 30 - 30	- 28 -	-			approximately 27 feet		
- 30	- 29 -	-		7777	Clay CLAY area of		
- 31 - 32 - 33 - 34 - 35 - 36 - 37 - 35 - 36 - 37 - 8 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 51 - 52 - 51 - 52 - 70 MW2-35 1032	- 30 -	69	MW2-30		sand (CL)		
- 33 - 34 - 35 - 36 - 370 AW2-35 1053 BORING TERMINATED AT APPROXIMATELY 36 FEET - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 51 - 52 - 70 AW2-35 1053	- 31 -		1032		<u>-</u>		
- 34 - 35 - 36 - 370 MW2-35 1053 - 37 - 8 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 51 - 52 - 55 - 51 - 52 - 70 MW2-35 1053 BORING TERMINATED AT APPROXIMATELY 36 FEET - CONTROL OF THE PROVINCE OF	- 32 -	-			· · · · · · · · · · · · · · · · · · ·		
- 35 - >70 MW2-35 1053 - 36 37 - 8 39 40	- 33 -	-					
36 - 37 1053 BORING TERMINATED AT APPROXIMATELY 36 FEET - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 51 - 52 - 51 - 52 - 7 -	- 34 -	-			-		
36 - 37 1053 BORING TERMINATED AT APPROXIMATELY 36 FEET - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51 - 52 - 51 - 52 - 51 - 52 - 7 -	- 35 -	- 70	11110 26		-		
BORING TERMINATED AT APPROXIMATELY 36 FEET 1	> /0	1053	1/2/2				
8 39 40 41 42 43 45 46 47 48 49 50 51 52 51 52		-			BORING TERMINATED AT APPROXIMATELY 36		
- 39 - - 40 - - 41 - - 42 - - 43 - - 44 - - 45 - - 46 - - 47 - - 48 - - 49 - - 50 - - 51 - - 52 -		1			FEE!	<u> </u>	
- 40 41 42 43 44 45 46 47 48 49 50 51 52 - '		_			-	_	
- 41 - 42 43 44 45 46 47 48 49 50 - 51 - 52 - 7	- [-	_	
- 42 - - 43 - - 44 - - 45 - - 46 - - 47 - - 48 - - 49 - - 50 - - 51 - - 52 -	i						
- 43 - - 44 - - 45 - - 46 - - 47 - - 48 - - 49 - - 50 - - 51 - - 52 -					-	1	
- 44 45	1					_	
- 45 - - 46 - - 47 - - 48 - - 49 - - 50 - - 51 - - 52 -		i				_	
- 46 - - 47 - - 48 - - 49 - - 50 - - 51 - - 52 -	1					_	
- 47 - - 48 - - 49 - - 50 - - 51 - - 52 -	. !	1					
- 48 - - 49 - - 50 - - 51 - - 52 -		1					
- 49 - - 50 - - 51 - - 52 -	1	1					
- 50 - - 51 - - 52 -		1					
- 51 - - 52 -			-				
- 52 - 1	- (_	·
	i		,				
1		1					
_ ا ا ا - 4د ا	٠ 4 (1					

ŔOJEC	T NO.	08726-0	6-02				1	
	# <u>-</u>	шį	эсү	BORING/WELL	NO.MW 3			
DEPT I FEE.	ETRE SIS1	SAMPLE NO.	ITHOLOGY	DATE DRILLED 4/2/97	WATER LEVEL (ATD)	20.0'	WELL CONSTRUCTION	HEADSPACE (PPM)
2	PENET RESI BLWS	S	LIT	EQUIPMENT	TR A-300 DRILLER	SDS	CONSTRUCTION	(11)
				S	OIL DESCRIPTION			
- 1 - - 2 -				APPROXIMATELY 4 CONCRETE Moderately dense, hum medium SAND (SC)	inches asphalt			
- 3 - - 4 -	.					- - -		
- 5 - - 6 - - 7 -	22 - 26	MW3-5 1049				-		,
- 8 - - 9 -				Peromes dense and ta	n-orange at approximately 10	- - -		· .
- 11 - - 12 - - 13 -	39 52	MW3-10 1106		1 feet	at approximately 11 feet			
- 14 - - 15 - - 16 -	59 79	MW3-15 1123		-Becomes damp and m feet -Becomes tan at appro	ore sandy at approximately 14 ximately 16 feet			
- 17 - - 18 - - 19	-							
- 20 - 21 - 22	31	MW3-20 1142		-Becomes dense, satur more clayey at approx	rated, brown-light yellow, and imately 20 feet			
- 23 - 24	- -	-	- //	-Becomes moist to we feet	et and brown at approximately 23	3		
Figur	e A-9, lo	g of Bori	ng MW	3		ed Next Page		6051A
	G ELEVA			FEET MSL	QUANTITY OF FILTER MATE			
DIAM	ETER & T	YPE OF CA	ASING:	2" PVC	WELL SEAL & INTERVAL:	CONCRETE		
· -	G INTER		0-15 FI	ET		3.5 BAGS BEN	TE/2-10 FEE	
	SCREEN:				ANNULUS SEAL/INTERVAL:	PENTONI	LLIZ-IU FEE	<u> </u>
<u> </u>	EN INTER		5-30 FE		ADDITIVES: WELL DEPTH: 30 FEET			
WELL	COVER:	FLUSI	I-MOU	NT CAND ID 21 FEED 2	WELL DEPTH: 30 FEET	ROSS WHIT	F. ·	

FILTERPACK/INTERVAL: #16 SAND/10-31 FEET ENGINEER/GEOLOGIST: ROSS WHITE

NOTE: THE LOG OF SUBSURFACE CONDITIONS SHOWN HEREON APPLIES ONLY AT THE SPECIFIC BORING OR TRENCH LOCATION AND
AT THE DATE INDICATED. IT IS NOT WARRANTED TO BE REPRESENTATIVE OF SUBSURFACE CONDITIONS AT OTHER LOCATIONS AND TIMES.

_	.T. T.	щ	067	BORING/WI	ELL NO_MY	<u>y 3</u>			
DEF IN FEET	PENETRAI RESIST. BLWS/FT	SAMPLE NO.	ITHOLOGY	DATE DRILLED 4/2	2/97 WATE	R LEVEL (ATD)	20.0	WELL	HEADSPACI
	A B B	Ω	LIT	EQUIPMENT	IR A-300	DRILLER _	SDS	CONSTRUCTION	(PPH)
				·	SOIL DESCRI	PTION			
		MW3-25 1155							
- 26 -									
- 27 -									
- 28 -					•				i
- 29 —								7:3:	
- 30 -	42	1W3-30							
31 -		1213		BORING	TERMINATED	AT 31 FEET		1	
- 32 -								7	
- 33 -			`		•			7	
- 34 -				r .				7	
- 35 -								7	
36 -				,					
- 37 —						' .		1	
- 8د								-	
39 –								-	
- 40 -								-	
- 41 -								-	
- 42 -								-	,
- 43								-	
- 44 -								-	
- 45 -								-	
- 46 -						y •		-	
- 47 -								-	
- 48 -								-	
- 49 -	-	-						-	
- 50 -	-] -						+	
- 51 -	1	•						-	
- 52 -			l i					4	
. `3 -	_							-	•
- 54 -								_	

DATE DRILLED: June 16, 1998 60-0348-01 PROJECT NO.: D. Swope LOGGED BY: Former Chevron 9-2795 LOCATION: G. McCue, RG APPROVED BY: 6051 El Tordo West Hazmat DRILLING CO .: Rancho Santa Fe California, California DRILLING METHOD: CME 75 Hollow Stem Auger grade) GRAPHIC LOG WELL SAMPLER TYPE: 2.0-inch Split Spoon Sampler BLOWS PER 6 INCHES DEPTH (feet below) CONSTRUCTION TPH (ppm) CGI (ppm) DEPTH TO WATER: 15 feet TOTAL DEPTH: 25.5 feet SAMPLE **DETAIL** uscs CASING ELEVATION: NA DESCRIPTION Utility box Surface Material: Asphaltic Concrete, Hand-augered to 5 feet below grade. with locking сар Cement SP SAND: light brown, dry, fine- to coarse-grained, with some silt and pebbles. Bentonite SM Grout SILTY SAND: yellowish orange, dense, dry, very fine- to coarse-grained, 17/37/50 а some gravel. tor 5° 4° diameter Schedule 40 PVC blank SANDY SILT: yellowish orange, medium dense, dry, very fine- to fine-17/22/30 ٥ grained sand. 4" diameter Schedule 40 PVC casing 0.020 50 for 6 10 SAND: light gray and white to yellowish orange, damp, very fine- to medium-SW grained, some silt. slotting SM Dense, very fine- to coarse-grained, ∞arsening. 50 for 6 Dense. End cap 33/50 55 Saturated. 30 **MW-4** LOG OF EXPLORATORY BORING ALTON **GEOSCIENCE** PAGE 1 OF 1 Sen Diego, California 60-0348 Borings 7/24/98 bia

PRO	JECT	NO	.:	60-03	48-01								
L	OCA	TION	1;	Forme	er Chevron 9-2795	LOGGED BY:	D	D. Swope					
				6051	El Tordo	APPROVED BY:	G	G. McCue, RG					
				Ranch	ho Santa Fe California, California DRILLING CO.:				West Hazmat				
æ				grade)	n Auger mpler	,	500	WELL					
BLOWS PER 6 INCHES	CGI (ppm)	ГРН (ррт)	SAMPLE	DEPTH (leet below	CASING ELEVATION: NA	WATER: 16.6 feet	nscs	GRAPHIC LOG	CONSTRU DETA				
<u> </u>	Ŏ	 -	Ŝ		DESCRIPTION Output Description Descriptio	to 5 foot below grade	-	8		Utility box			
				┝╹┃	Surface Material: Asphaltic Concrete, Hand-augered	id 3 leet below grace.				with locking cap			
					SILTY SAND: yellowish orange (10YR 6/6), damp, vi coarse-grained, poorly sorted, some pebbles and gra	ery fine- to very avel.	SM		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	– Cement _ Bentonite			
4/5/5	0		\prod	5	Loose, dry, very fine- to medium-grained, some pebb	les.				Grout			
				بليليل	Dark brown (7.5 YR 3/4), damp, very fine- to coarse o					4" dlameter - Schedule 40 PVC blank casing			
5/6/8	0			10	Yellowish orange, dry, very fine- to medium-grained.								
7/9/11	5	i i		15	Dark brown, moist, very fine- to coarse-grained, som Yellowish orange, damp to moist, very fine- to medium SAND: white, gray, and orange, dense, damp, very fine-	sw		15 —	4" diameter Schedule 40 PVC casing 0.020" slotting				
5 0	. 10		F	 	well sorted, clean with few ?, some silt.		-						
50	:			20	SILTY SAND: yellowish orange (10YR 6/6), damp, v coarse-grained, poorly sorted, some pebbles and gramoist.	avel.	SM		20-3				
for 5"					Decreasing silts, hit saturated zone.								
33/50 for 4*	170		П	25	Hydrocarbon odor.				25	- End cap			
				E									
				E									
				30	·				30-7				
				<u> </u>									
				E									
				35	·				35				
				F									
				E									
				F-40					40-				
		LTOI			LOG OF EXPLORATO	RY BORING	}		MW-	5			
	A GI	EOS!	CIE o, Ci	NCE lifornia					PAGE 1 C				
					· · · · · · · · · · · · · · · · · · ·				60-0348 Borings 7	724798 bla			

PRO	JECT	NO.	.:	60-03	48-01	DATE DRILLED: June 16, 1998							
L	OCA	TION	:	Forme	er Chevron 9-2795	LOGGED BY: D. Swope							
					El Tordo	APPROVED BY:			Cue, RG				
				Rancl	no Santa Fe California, California	DRILLING CO.:	V	/est l	Hazmat				
BLOWS PER 6 INCHES	CGI (ppm)	ТРН (ррт)	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: CME 75 Hollow Stendard Sampler Type: 2.0-inch Split Spoon Sampler Type: 25.5 feet DEPTH TO VICASING ELEVATION: NA		nscs	GRAPHIC LOG	WEL CONSTRU DETA	CTION IL			
				-0	Surface Material: Asphaltic Concrete, Hand-augered	to 5 feet below grade.			0	Utility box with locking cap			
19/24/31	0			55	SAND: greenish gray, fine- to medium-grained. SILTY SAND: brownish gray, dry, very fine- to mediu pebbles. Yellowish bright orange, medium dense, dry, very fine grained, clay. Yellowish orange, dense, damp, very fine- medium-grained pebbles.	≻ to fine	SP SM			Bentonite Grout 4° diameter - Schedule 40 PVC blank casing			
				E 10	sume peoples.		1		10-1	Casing			
24/27/32	0			11,111	Yellowish orange, not bright almost beige.	llowish orange, not bright almost beige.							
50 for 6"	o			15	medium-grained, well sorted, dean, very few ?, some	AND: white, gray, and orange (7.5YR 8), dense, damp, very fine- to edium-grained, well sorted, dean, very few ?, some silt.							
15/26/35	1.8			20	SILTY SAND: yellowish orange with dark brown street to medium-grained. White and gray with yellowish orange streaks, medium fine- to fine-grained.				8 111111111111111111111111111111111111				
38/50 for 3**	0.8			25	Very dense.				25	— End cap			
				30					41 11 11 11 11 11 11 11 11 11 11 11 11 1	·			
				Ē"					40				
	A G	LTOP	CIE	NCE Sifornia	LOG OF EXPLORATO	RY BORING			MW-				
	34	. oray	-,		1				60-0348 Borings	7/24/98 bla			

j

.

LITHOLOGY (UNIFIED SOIL CLASSIFICATION SYSTEM)

	(UNIFIED SOIL CLAS	SIFICATIO	N 3 (3 (EM)
	MAJOR DIVISI	ONS		TYPICAL NAMES
		CLEAN GRAVELS	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES LITTLE OR NO FINES
. ¥	GRAVELS MORE THAN HALF	WITH ≤ 5% FINES	GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES
SOILS ER TH	COARSE FRACTION IS LARGER THAN NO. 4	GRAVELS WITH	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
NED SOILS LARGER THAN IEVE	SIEVE SIZE	≥ 15% FINES	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
_ <u>~</u> ~		CLEAN SANDS	sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
COARSE-GRAINED SOILS ORE THAN HALF IS LARGER THA NO. 200 SIEVE	SANDS	WITH ≤ 5% FINES	SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
COARSE-GRA	MORE THAN HALF COARSE FRACTION IS SMALLER THAN No. 4	SANDS WITH	SM	SILTY SANDS, SAND-SILT MIXTURES
. 4	SIEVE SIZE	≥ 15% FINES	sc //	CLAYEY SANDS, SAND-CLAY MIXTURES
Z K			ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
OILS LER T	SILTS AN		CL //	INORGANIC CLAYS OF LOW- TO MEDIUM-PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
ED S	LIQUID LIMIT L	ESS THAN 50	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
FINE-GRAINED SOILS MORE THAN HALF IS SMALLER THAN NO. 200 SIEVE			мн	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
INE-G	SILTS AN		СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
MORE	LIQUID LIMIT GR	EATER THAN 50	ОН ///	ORGANIC CLAYS OF MEDIUM- TO HIGH-PLASTICITY, ORGANIC SILTS
	HIGHLY ORG	SANIC SOILS	Pt	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

SYMBOLS	NOTES
SAMPLE INTERVAL SAMPLE NOT RECOVERED GROUND WATER LEVEL ENCOUNTERED DURING DRILLING STATIC GROUND WATER LEVEL MEASURED IN WELL CONCRETE ASPHALTIC CONCRETE BENTONITE GROUT BENTONITE CHIPS No. 3 MONTEREY SAND or MEDIUM AQUARIUM SAND	B = benzene CGI = combustible gas indicator E = ethylbenzene fbg = feet below grade LEL = lower explosive limit MSL = mean sea level ND = below detection limits stated in official Laboratory Reports PID = photoionization detector ppb = parts per billion (μg/kg) ppm = parts per million (mg/kg) T = toluene TPH = total petroleum hydrocarbons TPH - G = total petroleum hydrocarbons as gasoline TPH - D = total recoverable petroleum hydrocarbons X = total xylenes

KEY TO BORING LOG

NOTES

Vertical Exaggeration - 4x

SCALE (feet)

J,

1

TPHg = total petroleum hydrocarbons as gasoline; B= benzene; mg/kg = milligrams per kilogram; ND = below detection limits stated in official Laboratory Reports. Well width dimensions are not to scale.

CROSS-SECTION B-B'

Former Chevron 9-2795 6051 El Tordo Rancho Santa Fe, California

FIGURE 7

ALTON
GEOSCIENCE
San Diego, California

Number: BOREHOLE / WELL LOG MW-7 SECOR Client Job No: Sheet CHEVRON USA 008.52795 1 of 1 Drilling Company/Driller: Location: Chevron Station No. 9-2795 West Hazmat Drilling / SECOR Rep: 6051 El Tordo Rick Hastings, Mike Barrow R. Reyes Rancho Santa Fe, CA Date Finished: Drill Rig/Sampling Method: Borehole Dia.: Casing Dia: Surface Elevation: Date Started: 10/24/01 CME-75 / Split Spoon N/A 10/24/01 WELL LOG SAMPLE LOG BORRHOLE LOG OVA/PID Lab Results Density Sample USCS Graphic Geologic Description Well Design Number TPHg(ppm) Blows/ft Symbol (Soil Type, Color, grain, minor soil component, moisture, density, odor, etc.) 4" Asphalt Surface Silty SAND, orangish-brown (2.5Y 7/7), fine to SM medium grained sand, subangular-subrounded, very slightly moist, dense, friable, no visible staining, no hydrocarbon (HC) odor. MW-7/5 26/52 Silty SAND, gray to yellowish gray (2.5Y 8/3), fine to medium grained sand, subangular to subrounded, SM highly indurated, slightly moist, dense, no visible staining, no HC odor. MW-7/10' 17/17/26 Silty CLAY, brown to yellowish brown, (2.5Y 6/5), slightly moist, dense, no visible staining, no HC odor. CLMW-7/15' ND 0.4 50 for 6' Silty SAND, light tan to gray and olive gray (5Y SM 7/3), sand grains subangular to subrounded, minor amount of silt, moist, dense, friable, no visible staining, no HC odor. MW-7/20 0.2 36/50 Silty SAND, orangish-brown (2.5Y 7/7), sand grains subangular to subrounded, minor amount of clay, SM moist, friable, no visible staining, no HC odor. MW-7/25' ND 34/50 0.3 Silty SAND, gray to light gray (2.5Y 7/2), SM subangular to subrounded sand grains, minor amount of clay, moist, dense, friable, no visible staining, no HC odor. Silty CLAY, mottled yellowish gray and orange (5Y MW-7/28 ND 27/50 CL 6/7), moist, dense, friable, no visible staining, no HC

odor.

TOTAL DEPTH AT 28 FEET BGS

	<u></u>	~~	_			POKE	HOLE / WELI	LOG	1	MW-8										
,	SE	CO	R		Client	CHEV	RON USA	Job No: 008.527	Sheet:	1 of 1										
SECOR Rep	o: Reyes	Appi	Clark	lale	Location	Chevron St 6051	ation No. 9-2795 El Tordo Santa Fe, CA		t Hazmat Drilli astings, Mike B	arrow										
Date Started	t:	Date Finished	Ŀ	Drill Rig/S				Borchole Dia.:		face Elevation:										
10/24/	/01	10/24/	01		CM	3-75 / Split S _l	рооп	8"	2"	N/A										
	BAMPLE LO	G					BOREHOLE LOG			WELL LOG										
Sample Number	OVA/PID (ppm)	Lab Results TPHg(ppm)		Depth in Feet	USCS Symbol	Graphic Log	Geold (Soil Type, Color, grain, minor s	ogic Description oil component, mois	sture, density, odor, et	Well Design										
	_	ļ		0		<u> </u>	4" Asphalt Surface													
				1 2 3 4	SM		Silty SAND, orangish medium grained sand minor amount of clay HC odor.	, subangular to	subrounded,	10										
				\$\times \times \	CL		Silty CLAY, brown to orange color, very slig staining, no HC odor.	h -												
MW-8/10'	0		36/50	10 × × × × × × × × × × × × × × × × × × ×	SM		Silty SAND, light gra fine, subangular to sul slightly moist, modera visible staining, no Ho	brounded sand stely indurated	l grains, very),										
MW-8/15	0.1			0.1	0.1		50 for 6"	50 for 6"	50 for 6*				ND 50 for 6"	15 × 6 7 9 9	SM		Silty SAND, light gra fine, subangular to su moderately indurated no HC odor.	brounded sand	l grains, moist,	
MW-8/20'	0		41/50	20 × 1 × 2 × 3 ×	SM		Silty SAND, light grafine, subangular to su moderately indurated no HC odor.	brounded sand	l grains, moist,											
MW-8/25'	0	ND	36/50	25 × × × × × × × × × × × × × × × × × × ×	SM		Silty SAND, tan to or to subrounded, fine to no visible staining, no	medium grain HC odor.	ned sand, moist											
MW-8/28'	0	ND	32/50	8 ×	SM		Silty SAND, tan to o subangular to subrou sand, wet, no visible	inded, fine to i	medium grained											
	Ī	30			TOTAL DEPTH AT 28 FEET BGS															

Number:

		α	Ъ			BORE	HOLE / WELI	LOG]	Number: MW-9		
	5E	CO	K		Client	CHEV	RON USA	Job No: 008,527		Sheet:	of 1	
					Location	Chevron Sta	ation No. 9-2795	Drilling Comp	any/Driller	:		
SECOR Re	p: Reyes	App	Pod	lode		6051 El Tordo West Hazmar Rancho Santa Fe, CA Rick Hastings, l						
Date Startes	·	Date Pinished		Drill Rig/S				Borehole Dia.:	_	ia:. Surface	Elevation:	
10/24	/01	10/24/	01		СМ	E-75 / Split Sp	oon	8"	2"	1	√A	
	SAMPLE LO	, .					BOREHOLE LOG				WELL LOG	
Sample Number	(ppm)	Lab Results TPHg(ppm)		Depth in Feet	USCS Symbol	Graphic Log	Geolo (Soil Type, Color, grain, minor so	gic Description oil component, mois	sture, density	, odor, etc.)	Well Design	
				0			4" Asphalt Surface				1577	
				1 2 3 4	ML		FILL MATERIAL (?) Clayey SILT, grayish (10YR 5/6), slightly m staining, no HC odor.					
MW-9/5'	0		3/4/5	5 XX 6 7 8 9 9	ML		Clayey SILT, grayish (10YR 5/6), slightly m staining, no HC odor.					
MW-9/10	0		36/50	10 × × × × × × × × × × × × × × × × × × ×	SM		Silty SAND, gray to or medium grained sand, moderately indurated, staining, no HC odor.	minor amoun	t of clay,			
MW-9/15	0.2	ND	15 for 6*	15 × 6 7 7 8 9 9	SC		Clayey SAND, gray to subangular to subround indurated, moist, dense mottled displaying ora odor.	led grained sa , no visible sa	and, mode taining, s	erately ample is		
MW-9/20	0.1		25/30/36	20 × × × × × × × × × × × × × × × × × × ×	ML		Clayey SILT, gray to c 6/3), minor amount of to subrounded, slightly staining, no HC odor.	fine grained s	and, suba	angular		
MW-9/25'	0.1	ND	50 for 6	25 × 6 × 7 × × ×	SM		Silty SAND, light gray if fine to medium grain friable, no visible stain	ed, slightly n	ioist, den			
MW-9/28'	0	ND	35/50	9	CL		Silty CLAY, mottled y 7/3), moist, dense, frial odor.	ole, no visible	staining			
				30			TOTAL DEPI	n Al 28 FEi	21 808			

CECOD						BOREHOLE / WELL LOG Number: MW-10							,
	SE	CO	R		Client:	Ch	on Texaco	Job No: MTCH.927		Sheet:	of 2		
SECOR Rep	ı: L/RT	App	proved by:		Location:	Chevron	605	vice Station #9-2795 I El Tordo anta Fe, California	Drilling Compa	zmat			
Date Started;	. ,	Date Finished	i:	Drill Rig/S	Sampling Me	ethod:			Borehole Dia.:	Casing Dia	a:. Surface	Elevat	tion:
4/13/0	04	4/13/0	04		СМЕ-	-75/ CA Sp	olit S	Spoon Sampler	8"	2"		<u></u>	
	SAMPLE LOC							BOREHOLE LOG				WELL	LLOG
Sample Number	OVA/PID (ppm)	Lab Results TPH(ppm)		Depth in Feet	USCS Symbol	Graphic Log		Geolo (Soil Type, Color, grain, minor so	ogic Description oil component, moist	ture, density, c	odor, etc.)		ell sign
	<u> </u>			0-		Erices (1975)		3" Concrete				1	7 র -
				2 3	ML			Silt with SAND, loose mostly silt, little fine-g hydrocarbon (HC) odd	grained sand, i	moist, no	·		
MW-10/5'				5	SM			Silty SAND, loose, ye medium grained sand,					
MW-10/10'	1.9		25	8 9	SW	- 14 14 14 14 14 14 14 14 14 14 14 14 14		Well graded SAND, d fine to coarse grained (2.5YR 4/6) stringers,	sand, little sil , no HC odor	lt, moist, r	red		
				10 × 1 × 2 3	- - - -			Well graded SAND, d mostly fine to coarse g no HC odor					
MW-10/15'	0.0		13	15 × 6 × 7	ML			Silt with SAND, stiff, mostly silt, some fine mottling, no HC odor	grained sand,	ay (5Y 6/2 moist, or	2), ange		
MW-10/20'	0.0		15	20 × 1 × 2				SILT, medium stiff, li silt, dry, no HC odor	ght olive gray	[,] (5Y 4/2)	, mostly		
MW-10/25'	0.0		8	3 4 25 ×			•	SILT, stiff, light olive no HC odor	; gray (5Y 5/2), mostly	silt, dry,		
MW-10/30'	0.0		18	7 8 9	SW		-	Well graded SAND, le 4/3), mostly sand, littl					

	~	~			-		F	30	R	EI	HOLE / WELI	LOG		Num	iber: MW	V-1	10	
	SE	C	O	R		Client:			Cl	hevr	on Texaco	Job No: MTCH.927	95.08	Shee	et: 2 c	of	2	1
						Location;		:hevi		n Ser	vice Station #9-2795	Drilling Compa	any/Drille	ny/Driller:				٦
SECOR Rep:	: L/ RT		Appr	roved by:			6051 El Tordo Rancho Santa Fe, California			1 El Tordo	West Hazmat							
Date Started:	. !		inished:		Drill Rig/S	Sampling Me			_			Borehole Dia.:	Casing I		Surface	Ele	vatio	n:
4/13/0	04	•	4/13/0)4		CME-	-75 	/ CA	. S	plit S	Spoon Sampler	8"	2"		·			
	SAMPLE 100										BOREHOLE LOG					WF	ELL 1	OG
Sample Number	OVA/PID (ppm)	Lab F TPH		Density Blows/fl	Depth in Feet	USCS Symbol	 	Grap Lo		; 	Geold (Soil Type, Color, grain, minor s	ogic Description oil component, mois	ture, densit	y, odor,	, etc.)		Well Design	
MW-10/30'	0.0			18	30 ×	SW						<u></u>		-			1	H
					2	-		Teach transfer to the control of the								H	目	
		+-			3	1				호						H		H
MW-10/35'	0.0			46	35	SM	1		-		Silty SAND, medium 4/4), mostly sand, littl	dense, mediur le silt, moist, r	n brows	– – n (5Y dor		H		
		 			6 ×	<u>-</u>					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					H		\exists
	<u> </u>	—			7	<u> </u>										B		\mathbf{H}
	 	—			8	_											目	\exists
MW-10/40'	0.0	┼─		19	9		┨┩	<u> </u>	-	-		light alive on	 •v (5Y :	 4/2)	· 	\parallel	1	日
MW-10/+0	0.0	-			40 ×	-					mostly silt, little sand			"~y,		H	目	
					1 ×	1	\prod				Bottom boring at 41 f	eet below gro	und sur	face		H		H
		 		ļ	3	<u> </u>										H		
		-		· · · ·	4	1								÷				
<u> </u>		_		 	45]										H		H
		+		-	6											H	ı	H
	1	+	<u></u>		7	- -										Ħ	ı	Ħ
	-	+			8	-										Ħ	ı	Ħ
		+			9	- - 										B	ı	
					50	1						n				H	ı	
]						•				H	ı	
					3											H	ı	H
				ļ	4			,								H	ı	
	<u> </u>			ļ	55	_										Ħ	ı	
		<u> </u>		<u> </u> '	6	-										Ħ	ı	H
	<u> </u>	<u> </u>		<u> </u>	7	_										H	ı	
	<u> </u>	╀		ļ	8	_										H	ı	H
	<u> </u>			<u> </u>	9 -	-										Ħ	ı	H
	<u> </u>	<u> </u>		<u> </u>	60	1										Ħ	1	F

DEFINITION OF TERMS

	PF	RIMARY DIVISIO	NS	GRAPHIC SYMBOL	GROUP SYMBOL	SECONDARY DIVISIONS
		GRAVELS	Clean Gravels		GW	Well graded gravels, gravel sand mixtures, little or no lines.
		More Than Half Of Coarse	(Less Than 5% Fines)		GP	Poorly graded gravels or gravel-sand mixtures, little or no fines.
တ	Larger e	Fraction Is Larger than No. 4 Sieve	Gravel		GM	Silty gravels, gravel-sand-clay mixtures, non-plastic fines.
COARSE GRAINED SOILS	f Of Material Is La , 200 Sleve Size		Gravel With Fines		GC ,	Clayey gravels, gravel-sand-clay mixtures, plastic fines.
SE GRAII	Half Of M No. 200 (;	Clean Sands (Less Than 5% Fines)		SW	Well graded sands or gravelly sands, little or no fines.
COAR	COARSE G More Than Half (SANDS More Than Half Of Coarse Fraction Is Smaller Than No. 4 Sieve			SP	Poorly graded sands or gravelly sands, little or no fines.
			Sands		SM	Silty sands, sand-silt mixtures, plastic fines.
•			With Fines		sc	Clayey sands, sand-day mixtures, plastic fines.
	-			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity.	
Smaller e		SILTS AND	imit Is		CL	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays.
RAINED SOILS	Of Material Is Smaller 200 Sieve Size	Less Tha	ın 50%		OL	Organic silts and organic silty clays of low plasticity.
FINE GRAIN More Than Half Of N Than No. 200	SILTS AND CLAYS Liquid Limit Is Greater Than 50%			мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts.	
				СН	Inorganic clays of high plasticity, fat clays.	
Ž		Greater III		ОН	Organic clays of medium to high plasticity, organic silts.	
HIGHLY ORGANIC SOILS					Pt	Peat and other highly organic soils

SECOR

BOREHOLE/WELL LOG LEGEND

Page 1 of 2

GRAIN SIZES

		U.S. Standard Series Si	eve				
	200	40	10	4 3/	4" 3	r 1:	2
		SAND		GR	AVEL	COBBLES	BOULDERS
SILTS and CLAYS	Fine	Medium	Coarse	Fine	Coarse	COBBLES	

RELATIVE DENSITY

Sands and Gravels	Blows/Foot [†]
Very Loose	0-4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	* Over 50
· .	

CONSISTENCY

Silts and Clays	Strength [‡]	Blows/Foot [†]	
Very Soft	0 - 1/4	0-2	
Soft	1/4 - 1/2	2 - 4	
Firm	1/2 - 1	4 - 8	
Stiff	1 - 2	8 - 16	
Very Stiff	2-4	16 - 32	
Hard	Over 4	Over 32	

MOISTURE CONTENT:

- Dry absence of moisture, dusty, dry to the touch.
- · Moist damp but no visible water.
- Wet visible free water, usually soil is below water table.
- 1 Number of blows of 140 pound hammer falling 30 inches to drive a 2 inch O.D. (1-3/8 inch I.D.) split spoon (ASTM D-1586).
- Unconfined compressive strength in tons/sq.ft, as determined by laboratory testing or approximated by the standard penetration test (AST D-1586), pocket penetrometer, torvane, or visual observation.

Soil Component %: Percentages of individual soil component described are relative and based on field observation only.

Graphic Log Symbols

⚠ Free Product

Groundwater (First Encountered)

Well Design Symbols

< >

Centralizer

Abbreviations Used

ags	Above Ground Surface
ms!	Mean Sea Level
A/C	Asphalt/Concrete
Bent	Bentonite
bgs	Below Ground Surface
ofia	Diameter
•	Feet
FP	Free Product
GW	Ground Water
HC	Hydrocarbon
-	Inches
med	Medium
mod	Moderate
NA	Not Analyzed
ND	Not Detected
NR	Not Recovered
ppm	Parts Per Million

Well Design Fill Patterns

SECOR

BOREHOLE/WELL LOG LEGEND

Page 2 of 2

APPENDIX B

Drilling Permit

PERMIT #LMON102161 A.P.N. #266-261-01-00 EST #H36819-002

SECOR INTERNATIONAL DE SAN DIEGO DEPARTMENT OF ENVIRONMENTAL HEALTH LAND AND WATER QUALITY DIVISION

MONITORING WELL CONSTRUCTION PERMIT

SITE NAME: OFF-SITE FROM CHEVRON STATION #9-2795

SITE ADDRESS: IN STREET, ADJACENT TO 17025 AVENIDAS DE ACACIAS,

RANCHO SANTA FE, CA 92067

PERMIT TO: INSTALL 1 GROUNDWATERING MONITORING WELL

PERMIT APPROVAL DATE: APRIL 12, 2004 PERMIT EXPIRES ON: AUGUST 10, 2004

RESPONSIBLE PARTY: CHEVRON ENVIRONMENTAL MANAGEMENT CO.

PERMIT CONDITIONS:

- Modify construction to permit a 3' bentonite transition seal. Construction approved as follows: 0-3' concrete surface seal, 3-10' annular seal, 10-13' 1. bentonite transition seal, 13-35' filter pack, 15-35' perforation.
- Wells must have a minimum 3-foot concrete surface seal. The surface seal shall consist of concrete able to withstand the maximum anticipated load without 2. cracking or deteriorating. The concrete should meet Class A specifications of a minimum 4000-pound compressive strength.
- All water and soil resulting from the activities covered by this permit must be managed, stored and disposed of as specified in the SAM Manual in Section 5, 3. E- 4. (http://www.sdcounty.ca.gov/deh/lwq/sam/manual_guidelines.html). In addition, drill cuttings must be properly handled and disposed in compliance with the Stormwater Best Management Practices of the local jurisdiction.
- Within 60 days of completing work, submit a well construction report, including all well and/or boring logs and laboratory data to the Well Permit Desk. This report 4. must include all items required by the SAM Manual, Section 5, Pages 6 & 7.
- This office must be given 48-hour notice of any drilling activity on this site and advanced notification of drilling cancellation. Please contact the Well Permit 5. Desk at 338-2339.

APPROVED BY: Caral franquille CAROL SPANGENBERG

NOTIFIED: by email 4/12/64 MSC

DATE: <u>04/12/2004</u>

PERMIT APPLICATION ΓER GROUNDW AND -

DOSE MONITORING WELLS

ERMIT #W LAGORICO 2/6/
LAM CASETIN #H 36 87 7 JUS
DATE RECEIVED:
EE PAID:
CHECK# 5 5 5

AND EXPLORATO	RY OR TEST BORINGS RECEIVE	D CHECK =
	FII	12 47
Mailing Address <u>(2001 (50</u> Contact Person <u>Karen</u>	Hinger Canyon Road City Anglos Streich Phone (925) 842	12 47 ent (0, Phone (925)842 - 1589 eymon State (A Zip 94583 - 1589 ext. NIA
	ECT IF APPLICABLE#H 36819-1002	
Mailing Address <u>2055</u> Registered Professional <u>Ru</u> Contact Person <u>Revol</u> T	normberry Phone / 1/17/2016	6195 ext. 291
D. DRILLING COMPANY	West Hazmat Diffing corp.	Zip 92110
Mailing Address 3620	Kurtz St. City San Diego	
TOTAL THEOD MA	TION	T. C.
CONSTRUCTION INFORMA TYPE OF WELLS/ BORINGS TO BE CONSTRUCTED	MATERIALS TO BE USED CASING SEAL/BORING BACKFILL	PROPOSED CONSTRUCTION Estimated ground water depth 5-20 ft.
#	Not Applicable	Concrete surface seal 0 to 3
Groundwater 1 Vadose	☐ Neat Cement	Annular seal 3 to 11
Boring	Type Mc	
Other	Cement & Bentonite	Bentonite transition seal 11 to 13
NUMBER OF WELLS TO	Gauge <u>Gdn. 40</u> Sand-Cement	Filter Pack 13 to 35
THAT OF BM DEEDS	Diameter 4 th Bentonite	Perforation 15 to 35
DEPORTMENT OF ENGINEERS ALL HER. TH	Well Screen Size O. ORO Other	NOTE: Attach a well construction diagram for wells with multiple completions
117927	Filter Pack # 3 Montery Sand (Specify) Drilling Method	
9141 141 426W25 4255.JC GHR 9JZEJEJ L CAC		

agree to comply with the requirements of County of San Diego and the State of Cali					DATE	3/30/04	
DRILLER'S SIGNATURE							
Within 60 days of completion, I will furnithe design and construction/or destruction	sh the Monitor	ing Well Permit	Desk with a c	omplete and a	curate wel	l/boring log. I v	vill certify
the design and construction/or destruction	of the well/bor	ings in accorda	nce with the pe	eimit appnean			
RG/RCE/CEG SIGNATURE	Mn	\sum			_DATE_	3/30/	04
	•						
						,	
	•					,	
	••						
						·	
					•		
			·				
7							
• • • • • • • • • • • • • • • • • • •							
		•					
educ Annua							
The state of the s					•		•
Alexander of the second of the		,	-		•		
				-		•	
in the second se							
		·					·
e dia							
					-		
			. <u> </u>				
				•	_	Count artment of Enviro	y of San Diego

SITE INFORMATION				
ASSESSOR'S PARCEL NUMBER _				
Name County of San Diego Right of	f Way			
te Address	City Rancho Santa Fe	Zip		
'C Vanicas				•
ROPERTY OWNER <u>County of San l</u>	Diego—See Attached Encroachr	nent Per <u>mit</u>	Phone	
ROPERTY OWNER County of San I	City	State _	Zip	
ailing Address				
	ጥላንም ብቹ	WELLS	Groundwate	r Monitoring Wells
UMBER OF WELLS 1	TITE OF	11 EDEC		
. ASSESSOR'S PARCEL NUMBER				
ite Nameite Address		City		Zip
ite Address				
				Phone
PROPERTY OWNER	Cit.		State	Zip
Aailing Address	City			
NUMBER OF WELLS	TYPE O	F WELLS		
· •				
3. ASSESSOR'S PARCEL NUMBER				
Site Name		0.4	·	
Site Name		City		
PROPERTY OWNER			State	Phone
Mailing Address	City		state	
NUMBER OF WELLS	TYPE O	OF WELLS		
4. ASSESSOR'S PARCEL NUMBER	R			
G1. 37	•		·	
Site Address		City		Zip
ρροργρτν οιννικο				Phone
PROPERTY OWNER Mailing Address	City		State	Zip
Trading / Editors				
NUMBER OF WELLS	·	OFMETT		
NUMBER OF WELLS	TYPE	OR METTS -		

Page gof

DEH;SAM-9060 (Rev. 06/03)

County of San Diego Department of Environmental Health G. FEES (in effect beginning July 1 '03 through June 30, 2004):

G. PERO (III direction 8		
ACTIVITY	FEE SCHEDULE	AMOUNT
Permit for Well Installations Only (Groundwater Monitoring Wells, Vadose, Vapor	\$100,00 for the marketing (1 x \$165.00 \$ 165.00
Permit for Well Maintenance	\$ 90.00 for first well maintenance inspection	1 x \$ 90.00 \$ 90.00
Inspection (Valid for three years)		
Each Additional New Well	\$140.00 for each additional well installation \$130.00 for each additional well maintenance inspection.	1 x \$140.00 \$ x \$ 30.00 \$
Permit for Borings Only (CPT's, Hydropunch, Geoprobes, Temporary Well Points, etc.)	\$165.00 for the first boring	1 x \$165.00 \$ x \$ 45.00 \$
Permit for Well Destructions Only	\$165.00 for the first destruction	1 x \$165.00 \$ x \$110.00 \$
Permit for any Combination of Well Installations, Borings, &	The first activity will be \$165.00	x \$165.00 \$
Destructions (except UST backfill permit)	\$140.00 for each additional well \$ 90.00 for first well maintenance inspection	x \$140.00 \$ 1 x \$ 90.00 \$
	\$ 30.00 for each additional well maintenance inspection	x \$ 30.00 \$ x \$ 45.00 \$ x \$110.00 \$
Permit for Underground Storage Tank Monitoring System in Backfill	\$305100 (Flat Fee)	<u>\$305.00</u>
(i.e. Enhanced Leak Detection)	TOTAL COST OF PERMIT	\$ <u>255.00</u>

H. APPLICATION SUBMITTAL, PLAN APPROVAL, PERMIT ISSUANCE, AND REQUIRED INSPECTIONS

Submit one (1) original and two (2) copies of this application package, including plan drawings with the required fee to the Monitoring V Permit Desk, Department of Environmental Health, Site Assessment and Mitigation Program (SAM). 1255 Imperial Avenue, San Diego, 92101. Or mail to P. O. Box 129261, San Diego, CA 92112-9261. Information in addition to that presented in the application package r be needed in order to obtain final approval. Checks should be made payable to the County of San Diego.

A permit will be issued by SAM upon review and approval of the application and plans. The required fees must be submitted with application package. No work is to begin on the proposed project until a permit has been issued. The required inspections canno scheduled until a permit is issued.

Once the permit has been issued, it is the responsibility of the permittee to notify SAM at least two (2) working days in advance to scheen each required inspection.

USE ONE APPLICATION PACKAGE FOR A SINGLE SITE PROJECT. A SINGLE PERMIT WILL BE ISSUED FOI SINGLE SITE PROJECT, EVEN IF WELLS/BORINGS ARE COMPLETED ON MORE THAN ONE PROPERTY. PLE/USE SEPARATE APPLICATIONS FOR MULTIPLE SITE PROJECTS.

PERMIT APPLICATION FOR GROUND WATER AND VADOSE MONITORING WELLS EXPLORATORY OR TEST BORINGS

•	For well destruction, complete only #1 below.
•	Well design, logging and construction must be supervised by a Geologist, Engineering Geologist or Civil Engineer who is registered or certified by the State of California.
•	Well driller must have an active C-57 License and current \$7,500 bond with the County.
• ,	Provide a plot plan giving location of property lines, existing improvements such as structures, underground tanks, underground utilities, underground piping, and the proposed monitoring and/or observation wells.
•	If applicable, provide a signed copy of the Property Owner Responsibility form for each property listed in Section "F." Provide encroachment/excavation permit and/or traffic control permit for work to be done in street or public right of way.
If	wells are to be destroyed, provide a description of method of destruction.
— И	What is the purpose of the well/boring investigation?Soil and groundwater investigation
V	What procedures will be used to prevent the well/boring from providing an avenue to contamination during onstruction?
_	All downhole equipment will be thoroughly decontaminated prior to use
-	
7	What field procedures will be utilized to determine if contamination exists?
-	Field screening using an organic vapor analyzer (OVA)
=	
. =	
•	What procedures will be used to determine whether samples will be sent for laboratory testing or archiving?

Samples will be sent for laboratory analysis based on field screening results

6 J	What constituents will be monitored and tested (Include EPA Laboratory Test Methods to be used)?
0, 1	TPHg, BTEX, MTBE, TBA, ETBE, DIPE by EPA 8260B
7 1	How will samples be transported and preserved? <u>Samples will be transported and preserved in an ice-filled</u>
8.	What sampling methods will be used? <u>California Split spoon sampler</u>
9.	Are you proposing a variation from the methods and/or procedures presented in the requirements for the construction of Vadose and Ground Water Monitoring Wells (Current SAM Manual Requirements). If yes, specify these variations.
	_No
10	. What procedures will be used to ensure no contamination will be introduced by the drilling equipment? All downhole equipment will be steam cleaned prior to use
11	1. What methods will be used to clean sampling equipment? <u>Triple rinse with alconox, tap water, and deionized</u>
5 77	_water
91	
1	2. What cleaning method will be used to clean casing and screen prior to installation? Only new, factory
in 1.	sealed screen and casing will be used.
jen.	
NATE:	

COUNTY OF SAN DIEGO

DEPARTMENT OF PUBLIC WORKS LAND DEVELOPMENT DIVISION 5201 Ruffin Road. Suite D San Diego, CA 92123-4310 (858)694-3275 Permit Number N 3942

(KIVA Code: 4940)

Issued: 15-MAR-2004

ENCROACHMENT PERMIT

Charge to:

APPLICANT

SECOR INTERNATIONAL INCORP 2655 CAMINO DEL RIO N #302

OWNER

SECOR INTERNATIONAL INCORP 2655 CAMINO DEL RIO N #302

SAN DIEGO, CA 92108

Res: 619-296-6195

SAN DIEGO

CA 92108

Phone: 619-296-6195

SITE ADDRESS:

THOMAS BROS

AVENIDA DE ACACIAS (NB LN, N/O EL TORDO -OPPOSITE RSF SCHOOL & LIBRARY) RSF TB 1168 D3

APN:

Project: UNASSIGNED

SCOPE OF WORK

Encroachment Description:INSTALL X1 MONITORING WELL Pipe Size:4" Material:SCH 40 PVC -FLUSH MOUNT WITH SURFACE OF P.C.C. SIDEWALK. NOTE:BMP'S TO BE ENFORCED.REF: E84680

Encroachment will not interfere with the public use & maintenance of:T/W, SHOULDER OR PARKING LN, SIDE PATH OR SIDEWALK, DRAINAGE STRUCTURE OR WATERCOURSE.

Permit Justification: REQ'D BY COUNTY OF SAN DIEGO, LAND & WATER QUALITY DIVISION.

NOTE: PERMIT REVISED 3/25/04.

This permit is governed by Chapter 6, Division 1, Title 7 of the San Diego County Code of Regulatory Ordinances.

In consideration of the granting of this permit, the permittee agrees:

- 1. To save harmless the County of San Diego and any officer or employee thereof for any accident, loss or damage to persons or property, happening or occurring as the proximate result of any placement, change or renewal of an encroachment under the terms of this permit, and to assume all of said liabilities.
- 2. To comply with all applicable laws in the establishment, maintenance and removal of the encroachment.
- 3. That he and any other persons engaged in any work authorized by this permit shall conform to all due safety precautions for the protection of persons and property.
- 4. To remove or relocate any encroachment placed, changed or renewed under the authority of this permit; prior to its expiration or within 24 hours of notification to remove, if the duration is 10 days or less; or within 5 days of notification to remove, if the permit is of indefinite duration.
- 5. After removing or relocating the encroachment to restore the highway to the equivalent or better condition than it was prior to the date this permit became effective, or prior to the date the encroachment was first placed, whichever is earlier.

In consideration of the a see agreement the permit is granzed.	Date: _	2/25/04
Director of Public Works by: The highway is in acceptable conditionthe permit and agreemen		
		a a
County of San Diego, Director of Public Works by:	Date:	

2

COUNTY OF SAN DIEGO

DEPARTMENT OF PUBLIC WORKS LAND DEVELOPMENT DIVISION 5201 Ruffin Road. Suite D San Diego, CA 92123-4310 (858) 694-3275

Permit Number E 84680

(KIVA Code: 4930)

Issued:

15-MAR-2004

Expires:

15-MAY-2004

Charge to: YH4680

EXCAVATION PERMIT

APPLICANT SECOR INTERNATIONAL INCORP 2655 CAMINO DEL RIO N #302

SECOR INTERNATIONAL INCORP 2655 CAMINO DEL RIO N #302

SAN DIEGO, CA 92108 Res: 619-296-6195

CA 92108 SAN DIEGO Phone: 619-296-6195

SITE ADDRESS:

THOMAS BROS

AVENIDA DE ACACIAS (NB LN, N/O EL TORDO -OPPOSITE RSF SCHOOL & APN: LIBRARY) RSF TB 1168 D3

OWNER

QUANTITIES:

Excavation Length (feet): 0.1 Excavation Width (feet): 0.1

Excavation Depth (feet): 35

Existing Surface: CONCRETE Purpose of Permit: TRENCH TO INSTALL X1 MONITORING WELL Pipe Size:4" Material:SCH 40 PVC -FLUSH MOUNT WITH SURFACE OF P.C.C. SIDEWALK NOTE: BMP'S TO BE ENFORCED. TRAFFIC CONTROL PERMIT REQ'D. REF: N-3942

NOTE:3/25/04 -PERMIT & PLAN REVISED, MOVE M.W. FROM ROADWAY INTO CONCRETE SIDEWALK.

Before you dig, call UNDERGROUND SERVICE ALERT at 1-800-422-4133.

Enter UNDERGROUND SERVICE ALERT Inquiry Identification Number here:

THIS PERMIT IS NOT VALID UNTIL AN INQUIRY NUMBER IS OBTAINED.

NOTIFY CONSTRUCTION INSPECTION at (858) 694-3165 24 HOURS IN ADVANCE OF BEGINNING OF ANY PORTION OF WORK, COMPLETION OF WORK, BACK FILL OR CONCRETE POUR, AND OTHERWISE AS REQUIRED BY THE DIRECTOR OF PUBLIC WORKS.

Work to be performed in accordance with San Diego County Department of Public Works "Special Provisions for Work Done Under Excavation Permit".

Issuance of this permit does not authorize any work to be performed until the permission of the property owner has been obtained.

This permit is granted under provisions of Title 7 of the San Diego County Code of Regulatory Ordinances. It is understood and agreed upon that if this location is under construction, the consent of the contractor must be obtained. This installation is granted with the strict understanding that same is subject to relocation, change of grade, or removal at the Request of the Director, Department of Public Works. Permittee shall be responsible for any liability due 10 any accident, loss or damage resulting from the design or performance of work involved,

County of San Diego,	Director of Public	Works by:	Jel flother
Date Completed:		Inspector:	

1

THIS PERMIT MUST BE KEPT ON THE WORK TO BE SHOWN TO ANY AUTHORIZED AGENT OF THE COUNTY UPON REQUEST:

Page:

of

APPENDIX C Monitoring Well Gauging Logs; Well Purging/Sampling Logs; Well Development Logs

WELL GAUGING DATA

Project#	04050	7-11/2 Da	te 5,	17/04	Client Che	vron	
			<u></u>	7	-		
Site	6051	EcTordo	Rd	Rancho	Santa le	,	

Well ID	Well Size (in.)	Sheen / Odor	Depth to Immiscible Liquid (ft.)	Thickness of Immiscible Liquid (ft.)	Volume of Immiscibles Removed (ml)	Depth to water	Depth to well bottom (ft.)	Survey Point: TOB or TOC	`
MW-10	7					(ft.) 26 · 92	Final 40.40	TOC	
									1
									.1
								·	,

								; ;	
1							-		
								1	
		† †				b b b			
								1 3 4 1 1	
		1						i t t	
1									8 8 9 9

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (408) 573-0555

WELL DEVELOPMENT DATA SHEET

Project #: 04050 7-MR	1	,	1	Client:	chev	new .	MÝ	9-2795
Developer: HoyT			Date De					
Well I.D. MW-10	-			Well Dia	ameter: (circle,o	ne) Ø	3 4 6
Total Well Depth:				Depth to				•
Before 36.30 After 40	.40			Before T	26,92	After	38.6	2
Reason not developed:	,			If Free F	roduct, i	hicknes	s:	
Additional Notations:				•		3.2		10 To
Volume Conversion Factor (VCF): [12 x (d³/4) x #] /231 where 12 = in / foot d = diameter (in.) # = 3.1416 231 = in 3/gn1	Well din. 2" 3" 4" 6" 10"	= = = = = = = = = = = = = = = = = = = =	VCF 0.16 0.37 - 0.65 1.47 4.08 6.87	\$ 1 1 1	•,		٠.	
/ X			<i>O</i> ified	i Volumes	}	=	/5.0 gall	

Type of Installed Pump
Other equipment used

Purging Device:

☐ Bailer

☐ Suction Pump

211 swab

☐ Electric Submersible
☐ Positive Air Displacement

- '		· ·	Cond.	TURBIDITY	VOLUME	· · · · · · · · · · · · · · · · · · ·
TIME	TEMP (F)	pН	(mS or µS)	(NTUs)	REMOVED:	NOTATIONS:
0715	Begin	swabb	ing we	1/ for	5 min	٠.
0730	Sara	bbras	Comple	ke		,
0738	Begi	N Pu.	rse			
.0740	70.2	6.4	10,230	71000	1.5	Heavy solt
0742	6905	6.8	12,600	71000	3	
0744	69.0	6.9	14,150	71000	4.5	DTW 31.60
0746		6.9	14,990	71000	6	Turbid
0747	68.9	6.9	15,730	71000	7.5	Less Silty
0748	68.9	ļ	16,280	71000	9.	DTW 33.54
0750	68.9	6.9	17,440	7 1000	10.5	·
0752	69.1	6.8	18.680	71000	12	
0753		6.8	19,140	71000	13.5	
0755		6,9	19,600	71000	15	
		If yes, note abo	ive.	Gallons Actual	ly Evacuated:	.33

WELL DEVELOPMENT DATA SHEET

Well I.D. nw-10 PAGE 2 OF 2
Project #: 040507-1111 Client: Chevron M7

TIME	TEMP (F)	рН	Cond. (mS or (133)	TURBIDITY (NTUs)	VOLUME REMOVED:	NOTATIONS:
0757	69.1	6,8	19,130	71000	16.5	DTOU 33:76
0759	69,0	6.9	19,900	71000	18	
0800	69,0	6,9	20,230	71000	19.5	Water Thinning out
0802	68,9	619	20,300	71000	21	
6804	68.9	619	20,660	7/000	72,5	
0806	68.6	6.8	20,810	71000	24	DTW 36,10
6889	68,9	6.9	20,950	7/000	25.5	clearing
5811	686	7:0	20,970	7/000	27	
0813	68.8	6,9	21,050	942	28.5	
0816	69.0	619	21,060	سس د ا	30	
0819	68.9	7,0	21,130	580	31.5	
0821	69,0	7.0	21,140	537	33	Hard Bottom
					• •	well Acartered
						:
		•				
	-					
L	<u> </u>	<u> </u>	J	l		<u> </u>

WELLHEAD INSPECTION CHECKLIST Page _____of ____ Other Action Well Not Well Inspected -Water Balled Wellbox Cap Lock Taken Inspected Repair Order No Corrective From Components Replaced Replaced (explain (explain Submitted Action Required Wellbox Cleaned Well ID below) below) MW-10 NOTES:

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.blainetech.com

GROUNDWATER MONITORING AT CHEVRON

SITE ADDRESS: 6051 EL TORDO SCOPE OF WORK

RANCHO SANTA FE

CITY:

as of 5/11/2004

Lab: DEL MAR

Phone: (949) 261-1022

Site #: 9-2795

SECOR Mountain View Maurice Baron Consultant: Name:

(650)691-0131

Phone: Rpt due date:

Engineer: Phone #: Release #: SAN DIEGO 3910 **TOC** COUNTY: Gauge to: Lock/Key:

Required regulatory notifications/ cooperative sampling requirements:

				<u> </u>		H *
Well I.D.	Required Analyses	Sampling Frequency	Sampling Months	Gauging Frequency	Remedial Devices	Notes & Tasks (bail SPH, install skimmer, etc.)
	TPH-G, BTEX and		NO NO SERVICE DE LA CONTRACTION DEL CONTRACTION DE LA CONTRACTION	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		Check for SPH
MW-1	OXYGENATES by 8260	BIANNUAL	MAY/NOV	BIANNOAL		TOUR COLLEGE
MW-2	TPH-G, BTEX and OXYGENATES by 8260	BIANNUAL	MAYINOV	BIANNUAL		
MW-3	TPH-G, BTEX and OXYGENATES by 8260	BIANNUAL	MAYINOV	BIANNUAL		
MW-4	TPH-G, BTEX and OXYGENATES by 8260	BIANNUAL	MAYINOV	BIANNUAL		TRAFFIC CONTROL
MW-5	TPH-G, BTEX and OXYGENATES by 8260	BIANNUAL	MAYINOV	BIANNUAL		TRAFFIC CONTROL
MW-6	TPH-G, BTEX and OXYGENATES by 8260	BIANNUAL	MAY/NOV	BIANNUAL		
WW-7	TPH-G, BTEX and OXYGENATES by 8260	BIANNUAL.	MAYINOV	BIANNUAL		

as of 5/11/2004
SCOPE OF WORK

GROUNDWATER MONITORING AT CHEVRON

Site #: 9-2795

9-2795			
Site #: 9-2795			
	BIANNUAL	BIANNUAL	BIANNUAL
Lab: DEL MAR	BIANNUAL MAY/NOV BIANNUAL	MAY/NOV BIANNUAL	MAYINOV BIANNUAL
Lab:	BIANNUAL	BIANNUAL	BIANNUAL
6051 EL TORDO	TPH-G, BTEX and OXYGENATES by 8260	TPH-G, BTEX and OXYGENATES by 8260	TPH-G, BTEX and OXYGENATES by 8260
SITE ADDRESS: 6051 EL TORDO	MW-8	9-WM	MW-10

CHANGES AND SPECIAL INSTRUCTIONS: BOTTLE SET: -TPH-G, BTEX, Oxygenates - 4 HCL voas

Extra Materials: Interface Probe

WELL GAUGING DATA

Projec	et#_ <u>0Uo</u>	513-661	Date _	5/13/04	<u></u>	Client _ Thorran	
				•		•	
Site	[200]	El Tordo	ac	Barrelon S	: 1		

				,			_		
	117.11			Thickness	Volume of				
	Well Size	Sheen /	Depth to	of	Immiscibles			Survey	
Well ID	(in.)	Odor		Liquid (ft.)	Removed	Depth to water	Depth to well		
1 1111111111111111111111111111111111111	(111.)	Odor	ridum (m.)	ridata (tr.)	(ml)	(ft.)	bottom (ft.)	or TOC	
m1	Ц		No S	PH		11.85	24.77	700	
MUSEL	2	·				13.84	34.34		
mw-3	2					11,19	29.42		
mw-4	4	•				11.89	25.10	ā	1
1MW-5	4		A. 4	to the second		12-75	25.05		i dage.
mwile	ų			•		14.75	24.46		j.
mw-7"	2	c			· ·	15.75	27.87	_ 10	" andry
mw-x	2					10.65	27.92		,
mw_q	-2	7	J.F.			13.62	27.90		
mw-10	2								·2
									,' .
			,						
	77 79 88 88 88 88 88 88 88 88 88 88 88 88 88								
					÷	·ź			
						<u> </u>			
,	_								

Blaine Tech Services, Inc. 1680 Rogers Ave., San Jose, CA 95112 (800) 545-7558

BTS#: QU	0513-06	,		Site:	7-279	5					
Sampler:				Date:	5/13	104					
Weather:	Sonny			Ambie	nt Air T	empera	ature	: 7 ₀	5°F		
Well I.D.:				Well I	Diameter	: 2	3	4) 6	8	
Total Well		77		Depth	to Water	r:1\.85	<u> </u>				
Depth to Fr	ee Product			Thick	ess of F	ree Pro	duct	(fe	et):		
Referenced	to:	(PVC)	Grade	D.O. M	Aeter (if	req'd):			YSI	HA	ACH .
DTW with 8	30% Recha	arge [(H	leight of Water	Colum	n x 0.20)) + DT	W]: •	14.4	13		
Purge Method:	Bailer Disposable Be Middleburg Fixed Electric Variable Elec	, Submersi	ble Other	Waterra Peristaltic tion Pump		Sampli fultiplier Ci	_(Other:	D D	Baile	e Bailer n Port Tubing
19.3 (C 1 Borehole Volum	Gals.) X	, S ed Volume			2" 8" 2" 10" Assumes 25	0.8 4" 1.1 4"	' 8" ' 10" " 12" porosit	1.1 1.5 2.0 y	6⁴' 6¹'	10" 2.1 12" 2.6	_
Tri	Temp (°F)	T.T	Cond. (mS)or μS)		bidity	Gals. I	م نسم 0	******		71	4
Time		pH			TUs)	,,,	Cemo	vea	,	Observa	inons
1347	~ h)(ال ال	matered @	16.5	gal-	-			pump	5 10245	@ 160ga)
	Fai	it rech	arging well								
1624	75.7	4.2	17.40	7	។	2	<u> </u>	•			
16.27	73.9	4.4	15.79	15	3	20	1				
						,					
Did well dev	water? (Yes	No	Gallon	s actuall	y evacı	ıated	1: 2	7		
Sampling D	ate: 5/13	loy	Sampling Time	e: V701		Depth	to W	/ate	r: ly.,	حاا	
Sample I.D.	•	à		Labora	tory:	Del Mar		Oth			
Analyzed fo	r: 72FF-9	I(TEX	XYS TPH-D	Other:				-			
EB I.D. (if a	pplicable)		@ Time	Duplic	ate I.D. (if appl	icab]	le):		į	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:						\	
D.O. (if req'	d): Pro	e-purge:		^{mg} / _L	Po	ost-purg	e:			لممو	mg/L
O.R.P. (if re	q'd): Pro	e-purge:		тV	Po	ost-purg	e;	,			mV
		-					-	r	,,,		

Blaine Tech Services, Inc.,1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

BTS#: OU	0513-CG	-1		Site:	9-279	75	
Sampler: (Date:	5/13/04	• -	
TT 741	Sunny					emperature: 8	8°F
Well I.D.: η				Well D	Diameter:	: 2 3 4	6 8
Total Well I		1.34		Depth	to Water	13.84	
Depth to Fre	e Product	••		Thickn	less of F	ree Product (fee	et):
Referenced	to:	(V)	Grade	D.O. M	leter (if	req'd):	YSI HACH
DTW with 8	30% Recha	arge [(F	leight of Water	Colum	a x 0.20)	. רו:[DTW: <u>)</u>	94
	Bailer Disposable Ba Modleburg Fixed Electric Variable Electric	c Submersi	Extrac	Waterra Peristaltic ction Pump Gals.	CD BD M 2" 8"	Sampling Method: Other: <u>4uttiplier CD BD Mulitor</u> 0.8 4" 8" 1.1 1.1 4" 10" 1.5	Disposable Bailer Extraction Port Dedicated Tubing
1 Borehole Volur		ed Volume		_ ,	Assumes 25	4" 12" 2.0 5% borehole porosity g diameter BD = boreho	
-			Cond.	Turl	bidity		
Time	Temp (°F)	pН	(mS) or μS)	(N7	TUs)	Gals. Removed	Observations
1112	73.0	5,6	18.43	72	9	17	
1115	~ ~ ~	rell .	Levaland	@ 18	<u> 901</u>	<u>-</u>	
		Fast.	recharing we	ell D.	•	1353 = 13.9	Ġ L
1405	716	5,4	18.02	13	3	25	
Did well dev	water?	Yes	No	Gallon	s actuall	y evacuated: 2	.5
Sampling Da	ate: 5/13	loy	Sampling Time	e: 1415		Depth to Water	r: 17.94
Sample I.D.		•		Labora		Del Mar Oth	ler
Analyzed fo		BUEN	QXYS TPH-D	Other:			
EB I.D. (if a	pplicable)		@ Time	Duplic	ate I.D. ((if applicable):	
Analyzed fo	r: TPH-G	BTEX	MTBE TPH-D	Other:			
D.O. (if req'	d): Pr	re-purge:		$^{ m mg}/_{ m L}$	Po	ost-purge:	^{mg} / _L
O.R.P. (if re	q'd): Pr	re-purge:		mV	Po	ost-purge:	_i mV

						
BTS#: ¿ų	0513-(G			Site: 9-279	15	
_	ÇG-			Date: 5/13/0	щ	
Weather:	Sunay_			Ambient Air Te	emperature: 7:	5°F
Well I.D.: n			1	Well Diameter:	2 3 4	6 8
Total Well I		1.42		Depth to Water	: 11.19	
Depth to Fre				Thickness of Fr	ree Product (fee	et):
Referenced	to:	(VC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with 8	30% Recha	arge [(H	leight of Water	Column x 0.20)	+ DTW]: 14.	83
		: Submersit	Extrac ble Other resible = 21.7	_ Gals. 2" 8" 2" 10"	Other: Other: Ot	Disposable Bailer Extraction Port Dedicated Tubing
		 ·a.	•		5% borehole porosity g diameter BD = boreho	le diameter
Time	Temp (°F)	pН	Cond. (mS) or μS)	Turbidity (NTUs)	Gals. Removed	Observations
1311	73.4	4.6	26.11	65	15	
1312				D. 18 gal		
		,	rorging well	Q		
1538			24.87	521	22	
			· · · · · · · · · · · · · · · · · · ·			
Did well de	water?	Yes.	No	Gallons actuall	y evacuated: Z	'て
Sampling D			Sampling Time	e: 1544	Depth to Wate	r: 14.53
Sample I.D.				Laboratory:	Del Mar Oth	ier
Analyzed fo			(XYS) TPH-D	Other:		•
EB I.D. (if a			@ Time	Duplicate I.D. ((if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:		
D.O. (if req	'd): Pi	re-purge:		mg/L P	ost-purge:	mg/ _L
O.R.P. (if re	eq'd): P1	re-purge:		mV P	ost-purge:	mV

Blaine Tech Services, Inc.,1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

Westher: Suncy Ambient Air Temperature: \$5°F Well I.D.: Mu U Well Diameter: 2 3 4 6 8 Depth to Free Product: Thickness of Free Product (feet): Referenced to: WC Grade D.O. Meter (if req'd): YSI HACH DTW with 80% Recharge [(Height of Water Column x 0.20) + DTW]: 14,53 Purge Method: Bailer Watera Sampling Method: Bailer Disposable Bailer Middleburg Peristaltic Extraction Pump Other: Other: Column x 0.20) + DTW]: 14,53 Purge Method: Bailer Watera Sampling Method: Bailer Disposable Bailer Disposab	SAI	ADTERO	COUN	IY CHEVIO	N WELL MOI	ILLOIGING DE	XIA OMEDI		
Sampler: CG- Date: 5 3 54	BTS#: OU	0513-06	-1_		Site: 9-2795				
Weather: Suncy Ambient Air Temperature: \$5°P\$ Well I.D.: Mw -4 Depth to Free Product: Thickness of Free Product (feet): Referenced to: Well Depth to Free Product: Thickness of Free Product (feet): Referenced to: Well Depth to Water: \(\lambda \) \(Sampler:				Date: 5 13 04				
Well I.D.: Mu -4 Total Well Depth: 25.10 Depth to Water: 1, 3 4 Depth to Wa	Weather:	•			Ambient Air T	emperature: 85	op		
Depth to Free Product: Referenced to: Refere					Well Diameter	: 2 3 4) 6 8		
Thickness of Free Product (feet): Referenced to:			.10		Depth to Water	11.89			
Referenced to: Orade D.O. Meter (if req'd): Purge Method: Bailer Disposable Bailer Middleburg Fixed Effective Submersible Variable Electric Submersible Variable Decric Deb Multiplier CD BD Multiplier Variable CD BD CD BD Multiplier Va					Thickness of F	ree Product (fee	et):		
Purge Method: Bailer Disposable Bailer Extraction Pump Dedicated Tubing Dedicated Tu				Grade	D.O. Meter (if	req'd):	YSI HACH		
Disposable Bailer Middleburg Fixe Electric Submersible Variable Electric Submersible Variable Electric Submersible 19.8 (Gals.) X 1.5 = 29.7 Gals. 1 Borehole Volume Specified Volumes Time Temp (°F) pH Cond. Turbidity (NTUs) Gals. Removed Observations 12.35 75.6 3.8 26.67 176 20 pw-ρ 3haux € 18 gal 17.49 716.0 3.6 26.04 37 37 30 Did well dewater? Yes Sampling Date: 51.3 σ4 Sampling Date: 51.3 σ4 Laboratory: DefMar Other Laboratory: DefMar Other Laboratory: DefMar Other Laboratory: DefMar Other Extraction Pump Other: Cond: Turbidity (NTUs) Gals. Removed Observations Calculated Volume Other: Calculated Volume Time Temp (°F) pH Cond. Turbidity (NTUs) Gals. Removed Observations L235 75.6 3.8 26.07 176 20 pw-ρ 3haux € 18 gal L245 The Other Did well dewater? Yes Calculated Volume Turbidity (NTUs) Gals. Removed Observations L245 The Other Did well dewater? Yes Calculated Volume Time Temp (°F) pH Cond. Turbidity (NTUs) Gals. Removed Observations Did well dewater? Yes Calculated Volume Turbidity (NTUs) Gals. Removed Observations Did well dewater? Yes Dought to Water: 12.48 Laboratory: DefMar Other Laboratory: DefMar Other Times Duplicate I.D. (if applicable): Times Duplicate I.D. (if applicable): Analyzed for: Teng BTEX MTBE TPH-D Other: DO. (if req'd): Pre-purge: "mg/t Post-purge: "mg/t Post-purge: "mg/t	DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.20)	+ DTW]: رير <u>.</u>	53		
19, 8 (Gals.) x	Purge Method:	Disposable Ba Middleburg Fixed Electric	Submersil	ole Other	Peristaltic ction Pump CD BD A	Other: Jultiplier CD BD Mulitp	Disposable Bailer Extraction Port Dedicated Tubing		
Time Temp (°F) pH (mS) (NTUs) Gals. Removed Observations 1235 75.6 3.8 26.07 176 20 pvmp 5lbux @ 18 gal 1249 76.0 3.6 26.04 37 30 Did well dewater? Yes (δ) Gallons actually evacuated: 30 Sampling Date: 5/13/σ4 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: ρημ - Ψ Laboratory: De Mar Other Analyzed for: PH TEX QXY TPH-D Other: EB I.D. (if applicable): Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: MS	19,8 (C I Borehole Volum	Sals.) X me Specifie	d Volumes	= 29.7 Calculated Volu	_ Gals. 2" 10" ime Assumes 2:	1,1 4" 10" 1.5 4" 12" 2.0 5% borehole porosity	6" 12" 2.6		
Did well dewater? Yes No Gallons actually evacuated: 30 Sampling Date: 5/13/64 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: My 4 Laboratory: DeMar Other Analyzed for: PH 5 TEX QXY3 TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: TEM-D Other:	Time	Temp (°F)	pН		1	Gals, Removed	Observations		
Did well dewater? Yes No Gallons actually evacuated: 30 Sampling Date: 5/13/64 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: May 4 Laboratory: DeMar Other Analyzed for: PH 6 TEX QXY3 TPH-D Other: BB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: TEM-D Other:	1235	75.6	3.8	26.07	176	20	pump slows @ 18 gal		
Did well dewater? Yes No. Gallons actually evacuated: 30 Sampling Date: 5/13/64 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: 15/13/64 Laboratory: De Mar Other Analyzed for: PH-G TEX QXY TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: Teg_l Post-purge: Teg_l		76.0	3.6	26.04	37	30			
Sampling Date: 5/3/64 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: Mar Other Analyzed for: TPH-G TEX OXYS TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: TPH-D Other: D.O. (if req'd): Pre-purge: TPH-D Other:									
Sampling Date: 5/3/64 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: Mar Other Analyzed for: TPH-G TEX OXYS TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: TPH-D Other: D.O. (if req'd): Pre-purge: TPH-D Other:									
Sampling Date: 5/3/64 Sampling Time: 1523 Depth to Water: 12.48 Sample I.D.: Mar Other Analyzed for: TPH-G TEX OXYS TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: TPH-D Other: D.O. (if req'd): Pre-purge: TPH-D Other:					·				
Sampling Date: 5/3/64 Sampling Time: \SZ3 Depth to Water: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Did well de	water?	Yes	No	Gallons actuall	y evacuated: 3	30 .		
Sample I.D.: Mar Other Analyzed for: PH-G TEX OXYS TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: MTBE TPH-D Other:		<u> </u>			e: ISZ3	Depth to Wate	r: 12.48		
Analyzed for: PH-G STEX QXYS TPH-D Other: EB I.D. (if applicable): Time Duplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: MTBE TPH-D Other: Post-purge: MTBE TPH-D Other:			•						
EB I.D. (if applicable): Outplicate I.D. (if applicable): Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: Post-purge: Diplicate I.D. (if applicable): Pre-purge: Diplicate I.D. (if applicable): Pre-purge: Diplicate I.D. (if applicable): Post-purge:				QXYS TPH-D	Other:				
Analyzed for: TPH-G BTEX MTBE TPH-D Other: D.O. (if req'd): Pre-purge: MTBE TPH-D Other: Post-purge: Post-purge: Post-purge: Post-purge: MTBE TPH-D Other:	ļ -			@	Duplicate I.D.	(if applicable):			
D.O. (if req'd): Pre-purge: mg/L Post-purge: mg/L	}			MTBE TPH-D					
			e-purge:	· · · · · · · · · · · · · · · · · · ·	mg/L F	ost-purge:	mg/ _{1.}		
O.R.P. (if req'd): Pre-purge: mV Post-purge: mV		 -			mV F	ost-purge:	mV		

Blaine Tech Services, Inc.,1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

BTS #: 040513-CG1	Site: C	1-2795	<u> </u>	<u> </u>		
Sampler: CG-	Date:	Date: 5 13 64				
Weather: Sunny	Ambie	nt Air Tei	mperature:	75°F		
Well I.D.: mw-5	Well D	iameter:	2 3	4 6 8		
Total Well Depth: 25.05	Depth	to Water:	12-75	·		
Depth to Free Product:	Thickn	ess of Fre	ee Product ((feet):		
TOTOLOGICO G.		leter (if re		YSI HACH		
DTW with 80% Recharge [(Height o	f Water Colum	1 x 0.20)	+ DTW]: \	5.21		
Purge Method: Bailer Disposable Bailer Middleburg Fixed Electric Submersible Variable Electric Submersible	Waterra Peristaltic Extraction Pump Other	CD BD Mu		thod: Bailer Disposable Bailer Extraction Port Dedicated Tubing Other: Mulitplier CD BD Multiplier 1,1 6" 10" 2,1		
	27.6 Gals.	2" 10" 1. Assumes 25%	. –	1.5 6" 12" 2.5 2.0		
		bidity	Gals. Remov	ved Observations		
Time Temp (°F) pH (mS)	, , , , , , , , , , , , , , , , , , , ,	TUs)		Ved Observations		
1329 73:1 4.3 16.		3	19	odor, pump slows		
- well devate	- D @ 2L	1 301-	·			
- Fast recharg	ing hell					
1603 75.1 4.3 17.9	37 2	7	28	<u> </u>		
Did well dewater? (es) No	Gallor	s actually	y evacuated	d: 28		
Sampling Date: 5/13/04 Sampl	ling Time: 160	8	Depth to W	Vater: 15.16		
Sample I.D.: Mly -5	Labora	atory:	Del Mar	Other		
Analyzed for: (PH-9 (TEX) (XY)	TPH-D Other:					
EB I.D. (if applicable):	The 11.	Duplicate I.D. (if applicable):				
Analyzed for: TPH-G BTEX MTBE	Time Dupue					
1111111 220d 101. 1111 0 2.2.1	TPH-D Other:					
D.O. (if req'd): Pre-purge:			ost-purge:	mg		

Well Diameter: Depth to Water Thickness of Fr	2 3 (4)	oF 6 8			
Ambient Air Te Well Diameter: Depth to Water Thickness of Fr	2 3 4 : 14.75				
Well Diameter: Depth to Water Thickness of Fr	2 3 <u>4</u> : 14.75				
Depth to Water Thickness of Fr	: 14.75	6 8			
Thickness of Fr					
	ee Product (fee	Depth to Water: (4,75			
D.O. Meter (if 1	Thickness of Free Product (feet): D.O. Meter (if req'd): YSI HACH				
$Column \times 0.20)$	+DTW]: 16,6	,9			
		Bailer Disposable Bailer Extraction Port Dedicated Tubing lier CD_BD Multiplier 6" 10" 2.1			
Gals. 2" 10" 1 ie Assumes 25	.1 4" 10" 1.5 4" 12" 2.0 % borehole porosity	6" 12" 2.6			
Turbidity	0.1 D :1	Ol so maticus			
(NIUS)	Gais. Removed	Observations			
11 gal-	·				
	' .				
7	15				
38	22				
·					
Gallons actuall	y evacuated: 7	22			
1710	Depth to Water	r: 19.57			
Laboratory:	Del May Oth	er			
Other:					
Duplicate I.D. (if applicable):				
Other:	·				
mg/L Po	ost-purge:	mg/ _L			
mV Po	ost-purge:	mV			
	Column x 0.20) Waterra Pristaltic on Pump Gals. CD BD M 2" 8" 2" 10" 1 Assumes 25' CD = casing Turbidity (NTUs) I 36' Gallons actually Caboratory: Other: Ouplicate I.D. (Other:	Sampling Method: Waterra Sampling Method: on Pump CD BD Multiplier CD B			

Blaine Tech Services, Inc.,1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

				1		
BTS#: ou	0513-C			Site: 9-276	15	
	<u> </u>			Date: 5 13 6	ρ <mark>ί</mark>	
Weather: 2				Ambient Air T		,
Well I.D.: y	Mw-7			Well Diameter	: ② 3 4	6 8
Total Well I		1.87		Depth to Wate	r: 15 /25	
Depth to Fre	ee Product			Thickness of F	ree Product (fee	et):
Referenced	to:	PVO	Grade	D.O. Meter (if	req'd):	YSI HACH_
DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.20) + DTW]: \7.7	17
Purge Method:	Bailer Disposable Bailer Middleburg Fixed Electric Variable Elec	Submersil	Extrac		Sampling Method: Other:	Bailer Disposable Bailer Extraction Port Dedicated Tubing
1 Borehole Volum	Bals.) X me Specific	\. \square	= <u>\$\$.0</u> s Calculated Volu	Gals. 2" 8" 2" 10" 1me Assumes 2	0.8 4" 8" 1.1 1.1 4" 10" 1.5 4" 12" 2.0 15% borehole porosity ng diameter BD = borcho	6" 10" 2.1 6" 12" 2.6
	- c0223		Cond.	Turbidity	Cala Daniana	Observations
Time	Temp (°F)	pН	mS or μS)	(NTUs)	Gals. Removed	Observations
1018	71.1	3.6	23.52	281	lo	
1025	72.3	3.7	23.91	196	15	
						·
Did well de	water?	Yes (No	Gallons actual	ly evacuated: 15	
Sampling D	ate: 5/13	154	Sampling Tim	e: 1033 1043	Depth to Wate	r: 17.75
Sample I.D.		_1 ,		Laboratory:	Itel Mar Oth	ner
Analyzed fo	1,150	H(TEX)	XY3 TPH-D	Other:		
EB I.D. (if a	applicable)):	@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo		BTEX	MTBE TPH-D	Other:		
D.O. (if req	'd): Pi	e-purge:		mg/L]	Post-purge:	^{mg} / _L
O.R.P. (if re	eq'd): Pi	e-purge:		mV 1	Post-purge:	mV

						!
BTS#: OU	0513-66		•	Site: 9-2	195	
Sampler: (Date: 5 13		
Weather:				Ambient Air	Temperature: 68	°F
Well I.D.:	NW-8			Well Diamer	er: (2) 3 4	6 8
Total Well I		.97.		Depth to Wa	ter: 10.65	
Depth to Fro	ee Product	:		Thickness of	Free Product (fee	et):
Referenced		(PVC)	Grade	1	(if req'd):	
DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.	20) + DTW]: 14.1	10
Purge Method:	Bailer Disposable Ba Middleburg Fixed Electric Variable Elec	Submersil	Extrac	CD B	Sampling Method: Other: D Multiplier CD BD Multiplier CD BD 1.1	Dispotable Bailer Extraction Port Dedicated Tubing
1 Borehole Volu	Gals.) X\ me Specific	i .5 ed Volume	= 20.7 Calculated Volu	_ Gals. 2" 10	0.8 4" 8" 1.1 " 1.1 4" 10" 1.5 4" 12" 2.0 cs 25% borehole porosity casing diameter BD = boreho	6" 12." 2.6
	an dim		Cond.	Turbidity	Gals. Removed	Observations
Time	Temp (°F)	pН	(mS) or μS)	(NTUs)		Observations
937	68.8	4.0	16.27	417	14	
944	69.3	3.8	17.37	185	21	
					•	
Did well de	water?	Yes (No	Gallons acti	nally evacuated: 7	
Sampling D	Date: 5 17	slou	Sampling Tim	e: 455	Depth to Wate	er: 14,07
Sample I.D				Laboratory:	Del Mar Ot	her
Analyzed for		-	OXYS) TPH-D	Other:		
EB I.D. (if			@ Time	Duplicate I.	D. (if applicable):	
Analyzed for		BTEX	MTBE TPH-D	Other:		
D.O. (if req	<u>l</u> 'd): P	re-purge:		mg/L	Post-purge:	ung/I
O.R.P. (if r		re-purge:		${ m mV}$	Post-purge:	mV
						

Blaine Tech Services, Inc.,1680 Rogers Avenue, San Jose, CA 95112 (408) 573-0555

BTS#: OU	0513-66	-1		Site: 9-2	795	
Sampler: උ				Date: 5 13	<u>ru</u>	
	Sunny			Ambient Air	Temperature: 79	°F .
Well I.D.:	1W-9			Well Diamete	er: (2) 3 4	6 8
Total Well I		.90		Depth to Wat	er: 13.62	
Depth to Fre	ee Product:			Thickness of	Free Product (fee	et):
Referenced		(PVC)	Grade	D.O. Meter (i	f req'd):	YSI HACH
DTW with 8	30% Recha	rge [(H	eight of Water	Column x 0.2	0) + DTW]: 16.0	47
·		Submersil tric Subme	Extracole Other	_ Gals. CD BD 2" 8" 2" 10"	Other: Other: Other:	lier CD BD Multiplier 6" 10" 2.1 6" 12" 2.6
			Cond. CG	Turbidity	sing traineter DD - Boleio	to transition
Time	Temp (°F)	pН	(mS) or (MA)	(NTUs)	Gals. Removed	Observations
1135	-well	dewo	leved @ 1	0 gal-		
		, r		TW@ 1420	+ 13.70'	
1428	70.5	3.6	24.44	298	12	
1433	69.6	3.5	24.75	. 376	18	
Did well de	water?	Yes	No	Gallons actua	ally evacuated: 18	<u> </u>
Sampling D	ate: 5/13	04	Sampling Tim	e: 1502	Depth to Wate	r: 16:12
Sample I.D.	· mw =	9		Laboratory:	Del Mar Otl	ier
Analyzed fo		B(EX)	OXYS TPH-D	Other:		
EB I.D. (if a			@ Time	Duplicate I.D), (if applicable):	
Analyzed fo	or: TPH-G	BTEX	MTBE TPH-D	Other:		
D.O. (if req	'd): P1	e-purge:		^{mg} /L	Post-purge:	mg/L
O.R.P. (if re	q'd): Pi	e-purge:		mV	Post-purge:	mV

			······			
BTS#: ou	0513-66		Maria de Mar	Site: 9-2795	· .	
Sampler:				Date: 5 13 04		
Weather: 2	actly	Cloud	V	Ambient Air T	emperature: lo	5°F
Well I.D.:				Well Diameter	: (2), 3 4	6 8
Total Well I		0,40		Depth to Water	r: 26,95	
Depth to Fre	ee Product	•		Thickness of F	ree Product (fee	et):
Referenced	to:	(PVC)	Grade	D.O. Meter (if	req'd):	YSI HACH
DTW with 8	30% Recha	arge [(H	eight of Water	Column x 0.20) + DTW]: 29,(c4
	Bailer Disposable Ba Middleburg Fixed Electric Variable Elec	: Submersil tric Subme	Extracole Other	CD BD 1	Sampling Method: Other: Multiplier CD BD Mulity 0.8 4" 8" 1.1	6" 10" 2.1
1 Borehole Volum		ed Volume	= <u>((, 0)</u> s Calculated Volu	ime Assumes 2	1.1 4" 10" 1.5 4" 12" 2.0 5% borehole porosity g diameter BD = borehol	6" I2" 2.6
			Cond.	Turbidity		
Time	Temp (°F)	pН	· (mS) or µS)	(NTUs)	Gals. Removed	Observations
843	67.9	6.0	20.63	71000	11	Turbid
848	68.7	5.9	20.64	סטטו די	16	
Did well de	water?	Yes	(No)	Gallons actual	ly evacuated:	16
Sampling Ď	ate: 5/13	loui	Sampling Tim	e: Goi	Depth to Wate	r: 29.60
Sample I.D.	•	-		Laboratory:	Del Mar Oth	er
Analyzed fo		ETE K	OXYS TPH-D	Other:		
EB I.D. (if a			@ Time	Duplicate I.D.	(if applicable):	
Analyzed fo	···	BTEX	MTBE TPH-D	Other:	-	
D.O. (if req	'd): Pi	re-purge:		mg/L I	Post-purge:	mg/ _L
O.R.P. (if re	eq'd): Pi	re-purge:		mV I	Post-purge:	mV
						

CHAIN OF CUSTODY FORM

	Chevian site Global ID: 1000(3891/3		Address: 2301	Jacher Met	Insultant, offor Marketinal	Chevron Consultant: SECOK International, Inc.	-		_	ANAL	YSES F	ANALYSES REQUIRED	-	Special Instructions
Chevron Site Number 9-2795 Chevron Site Address: 6051 El Tordo , Rancho Santa Fe Chevron PM: SECOR: c/o Madelaine Montilla 2301 Leghorn, Mountain View, CA 94043 Chevron MT PM Phone No.: (650) 691-0131 x 235	9-2795 6051 El Tordo , Rancho CO Madelaine Montilla View, CA 94043 No.:(650) 691-0131	o Santa Fe	Consultant Contact: Ma Consultant Phone No. (65 Consultant Project No. M Sampling Company: BTST Sampled By (Print): Ch.	Contact:	Consultant Contact: Maurice Baron Consultant Phone No. (650) 691-0131 Consultant Project No. MTCH,92795.08 Sampling Company: BTST Sampled By (Print): Chris Gordon	11 18 19 19 19 19 19 19 19 19 19 19 19 19 19	□иззаов он прнат с	□ эсун 🔁 гатамарүхс	חים בינסם	☐ YTINLIANJA 1,016 A93	EPA 413.10IJGREASES			
MT Job No: MTCH.92795.08 Chevron Sarvice Code; Z202800 X Management Transfer – SO CA Portfolio Job E-Conetruction/Retail-Job-or E-Conetruction/Retail-Job-or H-Retail-and-Terminal-Business-Unit (RTBU) Job NOTE: NOTE: CORRECTLY AND COMPLETELY. SAMPLE ID	Portfolio Jot finit (RTBU). J : : PIELIOS MUSI : OMPLETEL	leb	Del Mar Analytical X Inine, CA U Colton, CA Lab Contact: Phone No: C (949) 261-1022 C (909) 370-4667		Lancaster Laboratories D Lancaster, PA Lab Conlact: Teresa Cunningham Phone No: D (717) 656-2300	EDF Required? 区Yes 口 No	ORO DOO DOO ORO!	□ aaTM x3T3 (2-0-H9) 80628	6010/7000 71TLE ZZ METALS T	□ Hª 1.081	5108 SPECIFIC CONDUCTIVITY			Time Te Colors I T
Fleld Point Name Matrix	Tept Depth	Date (yymmdd)	Sample Time	Container Type	# of Containers	Preservation								Notes/Comments
3 -		ट्स ं टर	1001	\ रुवर्ष	3	- L C		××					-	
mw-4			1574 1573					××						1, 1, 1
MW 5			12 of 1					××						
Mw-7			1043					××:						
t		>	1567. 901					××						
Rejinfiuished By Company (BTS Relinedished By Company	\$ \ 2	1/5	Date/Time: S/13/64 Date/Time:	K C E	Relinquished To Date/Time: (A.) Relinquished To	Company	ره اس				Turnarour 24 Hours	뇓		E.
By	any		Date/Time:		Date/Time: Refinquished To Date/Time:	Company					48 hours Sample Ir	Integrity:	ity: (Check	48 hours

WELLHEAD INSPECTION CHECKLIST Date _____5/13/04 Cheson Site Address 6051 El Tordo Rd, Rancho Santa Fe Technician Job Number 040513-(61 Olher Action Well Not Well inspected -Water Bailed Wellbox Lock Inspected Repair Order Сар Taken No Corrective From Components Submitted Replaced Replaced (explain (explain Wellbox Cleaned Well ID Action Required below) below) mw-1. MW-Z Mw-3 mw-4 mw-6 mw-7 mw-8 <u>mw-9</u> mw-10 NOTES:

BLAINE TECH SERVICES, INC.

SAN JOSE

SACRAMENTO

LOS ANGELES

SAN DIEGO

www.biainetech.com

APPENDIX D Waste Disposal Documentation

	The Spate Care	TPS	Technolo Non-L	Iazardo Iazardo							
	Date of Shipment	Responsible for Pa		nsporter:			Facility#:	J'S	a TU	,	Load #
				922	Generato	(a Phone	<u> </u>	/ / /	Generator's US I	EPA ID No.	
	Jenerator's Name and Billing A	Address:		[GELIETH(O)	. a i none					
	CHEVRON PROI	DUCTS CO.		1	Person to	Contact	K. Hre	ich			
	P.O. BOX 6004			}-	FAX#:	D. RE			Justomer Accou	ini Number w	ith TPS:
	SAN RAMON, CA	4 94583	· · · · · · · · · · · · · · · · · · ·								
-	Consultant's Name and Billing	Addruss:	38	l.	Censulta		230-1286			•	
	SECOR INTERN	ATIONAL, INC.	****	-	Person h	Contact	ORNBERI	RY		· · · · · ·	
	2655 CAMINO D	EL RIO NORTH	SUITE 302	#	FAX#:	·			Сивтотет Ассол	ınt Number w	rith TPS:
	san Diego, Ca					(61日)	266-6169				
 	Generation Sile (Transport from	m): (name & address)	-		Site Pho	ne #:			BTEX Levels		
	CHEVRON S/S	A Company of the Comp		}	Person t	o Contact	:		XPH		
پ	6051 EL TORDO	>			,, <u> </u>				Levels AVG.		
Consultant	RANCHO SANT		•		FAX#:				Levels		
Jiet Jiet	TWR # 9349840 Designated Facility (Transport		· · · · · · · · · · · · · · · · · · ·		Facility	73996 ⁴ 1	882-8001		Facility Perimit	Numbers	
	TPS TECHNOLO	* E		i	L	Contact			-	**************************************	
and/or	12328 HIBISCU		Ą	色 /4.	Y.eksou a	JOE	PROVANS	SAL_		·	
	ADELANTO, CA				PAX#:						
Generator		5.1.1		-	Transpo	rt sefalli s	197-6000	\	Transporter's I	is eva id No.	:
Ger	Transporter Name and Mailin		ilia abatib		<u></u>					71771 B.T.	
	PSC IMDUSTRU 1861 E. 32ND S		STATE AND EASTERN THE		Person !	LOU LOU	BAILEY		Transporter's I	~1 No.:	2
	LONG BEACH,				PAX#:		Her nee	112	Customer Acco	ount Number	with IPS:
				۳ {هـ	<u> </u>		997-605 iption of Deli		Gross Weight	Tare Weight	Net Weight
	Description of Soll	Moisture Content	Contaminated by			,	<u> </u>	Dr J			
	5and D. Organic D.	0 - 10% D 10 - 20% D	Ges D Diesel D Other D	J. 79 8	P	4 1 4	Dies		13000	8020	4780
		20% - ower 🗅 0 - 10% 📮	Gas 🖸	1.							249
	Clay D Other D	10 - 20% □ 20% - over □	Diesel (2 Other (2)						<u> </u>	1100	J- 1
	List any exception to items listed	• :	j						1/	0101	
	Generator's and/or consul Sheet completed and certi	ltant's certification: fied by me/us for the	I/We certify that t Generation Site :	he sail re shown ab	ferenced ove and	herein ji nothing	s taken entire has been add	ely from i ded or do	those soils desc ne to such soil	cribed in the that ropuld	Soil Data aller it in
	any way. Print or JEANAINE DUI	NCAN-AM-ADM	for Chevion B	instrații	and and	day	Ince	11 11		Month	P2 1/97
-									beiño delivere	ed in exactly	the same
Transporter	Transporter's certification condition as when receive without off-loading, adding	ed - MARE firther cer	rtini inat inis son	16 QUAY	HAILCHIN	114419	n rom ji bili kil	e Genera	tion Site to th	ie Designate	d Facility
Suz	Print or Type Name:	<u> </u>	4,	Si	gnature and	d date:				Month 2	Day Xint
Ī	CA5037X	7N			7 7/1	<u> </u>				10/	- 7- A/T
4	Discrépancies:	•	_	ه س	-			1			
Facility			•						•		
PF	Recycling Facility certifies	the receipt of the soil	covered by this man	ilfesi erce	pt as not	ed above:		//-			
Recycling	Print or Type NOE PROV			Si	Kueşniz eyi	d date:	7	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u>.</u> [
Rec	Werl, F FTQ W	A AM of Both about 1 House between between		,	•					7.7.	9
	1		•	!		_		N .		/ }	

CHEVRON-SOUTHERN CALIFORNIA TYPE A BILL OF LADING

GROUND. WATER WELLS IS OADS OF APPROPRIATE SIZE AND HAULED BY PSC CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NON-PURGE- WATER WHICH HAS BEEN COLLECTED BY THE CONTRACTOR, MADE UP INTO RECORD BILL OF LADING FOR NON-HAZARDOUS PURGEWATER RECOVERED TO THEIR FACILITY IN LONG BEACH, CALIFORNIA. WELLS GROUNDIMATER FROM **-MZARDOUS** RECOVERED SOURCE FROM

The contractor performing this work is BLAINE TECH SERVICES, INC. (BLAINE), 13741 Danielson St. Suite E, Poway, CA (phone [310] 885-4455). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY to recover, collect; apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BLAINE. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BLAINE; from one Chevron facility to BLAINE via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of Chevron Products Company.

This **Source Record BILL OF LADING** was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

9-2195

CHEVRON #

(005) Ectordo Rd Rancho Sankere CAI street number street name city state

<u> </u>	
WELL I.D. GALS. / // // // // any other / adiustments /	TOTAL GALS. 36 BTS vehicle # 43 RECOVERED 9836 517109 Signapling 12 REC'D AT founcy time date signature 18 White time date 17109 Willoaded by the signature 18 White time date 17109 Willoaded by the signature 18 White time date 17109 Willoaded by the signature 18 White time date 17109
WELL I.D. GALS. MW-10 1 3 3 1 1 added equip. 3	TOTAL GALS. 36 RECOVERED 36 O40507-74 signsture flowed unloaded by signature flowed

SOURCE RECORD BILL OF LADING FOR NON-HAZARDOUS PURGEWATER RECOVERED FROM GROUNDWATER WELLS AT CHEVRON FACILITIES IN THE STATE OF CALIFORNIA. THE NONHAZARDOUS PURGE- WATER WHICH HAS BEEN RECOVERED FROM GROUND- WATER WELLS IS COLLECTED BY THE CONTRACTOR, MADE UP INTO LOADS OF APPROPRIATE SIZE AND HAULED BY PSC TO THEIR FACILITY IN LONG BEACH, CALIFORNIA.

The contractor performing this work is BLAINE TECH SERVICES, INC. (BLAINE), 13741 Danielson St. Suite E, Poway, CA (phone [310] 885-4455). Blaine Tech Services, Inc. is authorized by CHEVRON PRODUCTS COMPANY to recover, collect, apportion into loads, and haul the Non-Hazardous Well Purgewater that is drawn from wells at the CHEVRON facility indicated below and to deliver that purgewater to BLAINE. Transport routing of the Non-Hazardous Well Purgewater may be direct from one Chevron facility to BLAINE; from one Chevron facility to BLAINE; from one Chevron facility to BLAINE via another Chevron facility; or any combination thereof. The Non-Hazardous Well Purgewater is and remains the property of Chevron Products Company.

This Source Record BILL OF LADING was initiated to cover the recovery of Non-Hazardous Well Purgewater from wells at the Chevron facility described below:

CHEVRON #

Catosi El Terda (A Randa Sanla Fe, CA street number street name city state

WELL I.D. GALS.	WELL I.D. GALS.
327 1 226	
	,
	/
added equip.	any other adjustments /
TOTAL GALS. RECOVERED ZYLS	loaded onto BTS vehicle # 46
BTS event # \$\alpha \cdot \signature \cdot C4 \\ signature \cdot C4	time date /3 /7 /7 /7 /7 /7
***********	***************************************
REC'D AT STS - Foway unloaded by signature) / M	time date 13 104

APPENDIX E Wellhead Survey Elevation Report

Chewron 9-2795,6051 El Tordo, Rancho Santa Fe Chewron 9-2795,6051 El Tordo, Rancho Santa Fe	Chevron 9-2795, 6051 El Tordo, Rancho Santa Fe Chevron 9-2795, 6051 El Tordo, Rancho Santa Fe
RIMMWA 2PVCMW-A	SRIMMAN-7 VZEVCAM-7 RIMMAN-5 RIMMAN-5 RIMMAN-1 RIMMAN-1 RIMMAN-1 APVCAMV-1 RIMMAN-1 APVCAMV-1 RIMMAN-3 ZEVCAMV-3 ZEVCAMV-3 ZEVCAMV-3 ZEVCAMV-3 ZEVCAMV-3 ZEVCAMV-3 RIMMAN-1 ZEVCAMV-6 RIMMAN-1 ZEVCAMV-6 RIMMAN-1
4/20/04 4/20/04	10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03
33,021072 33,021071	33.0204820 33.0204820 33.0204830 33.0204830 33.0207888 33.0207888 33.0207888 33.020659 33.020659 33.020659 33.020659 33.020659 33.020659 33.020659 33.020659 33.020659
33,0210725 117,2050802 33,0210712 117,2050797	Manufe (minute) 33.0204820 117.2040829 33.0204820 117.2040829 33.0204831 117.2040829 33.0204832 117.2039085 33.0204832 117.2039085 33.0204831 117.2037129 33.0204829 117.2037129 33.0204829 117.2037129 33.0204829 117.2037129 33.0204829 117.2037129 33.0204829 117.2037129 33.0204829 117.2037129 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127 33.0204831 117.2037127
egps/ears	mahad pagadan aga aga aga aga aga aga aga aga aga a
NAD83 NAD83	NADB3 NADB3
<1meter	stam witeracev WDB3 - rimeter
Southem California Survey Southem California Survey	Southern California Survey
APM M	APM
1991,35 epach 1991,35 epach	OFS Net y, sercy, dart maxis geneish pressu APM 1991,35 spoch 234,62 off APM 1991,35 spoch 233,70 dif APM 1991,35 spoch 233,77 dif APM 1991,35 spoch 233,77 dif APM 1991,35 spoch 234,96 diff APM 1991,35 spoch 234,96 diff APM 1991,35 spoch 234,97 diff APM 1991,35 spoch 233,97 diff APM 1991,35 spoch 233,97 diff APM 1991,35 spoch 233,97 diff APM 1991,35 spoch 233,93 diff APM 1991,35 spoch 233,18 diff APM 1991,35 spoch 233,18 diff APM 1991,35 spoch 233,16 diff APM 1991,35 spoch 233,16 diff APM 1991,35 spoch 233,16 diff APM 1991,35 spoch 233,17 diff APM 1991,35 spoch 230,11 diff APM 1991,35 spoch 227,30 diff APM 1991,35 spoch 227,30 diff APM 1991,35 spoch 227,35 diff APM 291,35 spoch 237,35 diff APM 291,35 spoch 237,37 diff APM 291,3
208.60 207.95	234.62 234.62 234.22 233.70 232.77 233.29 234.92 233.93 234.97 234.97 235.96 237.95 239.96 237.95 23
NGVD29 NGVD29	REMAN REGYDZ9
-0,65	-0.40 -0.93 -0.16 -0.45 -0.45 -0.46 -0.46 -0.44
County of San Diego BM# ES0045 EL=195,95 sq. NE La Grannda & Av Acacia. County of San Diego BM# ES0045 EL=195,95 sq. NE La Grannda & Av Acacia	DOMENTARIA COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia COMINY of San Diego BN# ESO045 EL=195.95 sq. NE La Granada & Av Acacia

APPENDIX F

Subsurface Soil and Groundwater Laboratory Reports and Chain-of-Custody Documentation

LABORATORY REPORT

Prepared For:

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Ryan Turner Project: Chevron 9-2795

Sampled: 04/13/04 Received: 04/14/04 Issued: 04/28/04

NELAP #01108CA

CA ELAP #1197

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID

CLIENT ID

MATRIX

IND0925-01

MW-10-S-25'-040413

Soil

C. Rotons

Chris Roberts Project Manager

Del Mar Analytical, Irvine

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Ryan Turner Project ID: Chevron 9-2795

Sampled: 04/13/04

Report Number: IND0925

Received: 04/14/04

VOLATILE FUEL HYDROCARBONS BY GC/MS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND0925-01 (MW-10-S-25'-040	413 - Soil)							
Reporting Units: ug/kg						•		
Volatile Fuel Hydrocarbons (C4-C12)	TPH by GC/MS	4D16013	100	ND	1	4/16/2004	4/16/2004	
Surrogate: Dibromofluoromethane (80-125%))			110%				
Surrogate: Toluene-d8 (80-120%)				104 %				
Surrogate: 4-Bromofluorobenzene (80-120%))			101 %				

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Ryan Turner Project ID: Chevron 9-2795

Sampled: 04/13/04

Report Number: IND0925

Received: 04/14/04

BTEX/OXYGENATES by GC/MS (EPA 8260B)

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: IND0925-01 (MW-10-S-25'-04041	3 - Soil)							
Reporting Units: ug/kg								
Benzene	EPA 8260B	4D16013	50	ND	1	4/16/2004	4/16/2004	
Ethylbenzene	EPA 8260B	4D16013	50	ND	1	4/16/2004	4/16/2004	
Toluene	EPA 8260B	4D16013	50	ND	1	4/16/2004	4/16/2004	
o-Xylene	EPA 8260B	4D16013	50	ND	1	4/16/2004	4/16/2004	
m,p-Xylenes	EPA 8260B	4D16013	100	ND	1	4/16/2004	4/16/2004	
Xylenes, Total	EPA 8260B	4D16013	150	ND	1	4/16/2004	4/16/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4D16013	5.0	ND	1	4/16/2004	4/16/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4D16013	5.0	ND	1	4/16/2004	4/16/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4D16013	5.0	ND	1	4/16/2004	4/16/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4D16013	10	ND	1	4/16/2004	4/16/2004	
tert-Butanol (TBA)	EPA 8260B	4D16013	50	ND	1	4/16/2004	4/16/2004	C
Surrogate: Dibromofluoromethane (80-125%)				110%				
Surrogate: Toluene-d8 (80-120%)				104 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				101 %				

Del Mar Analytical, Irvine Chris Roberts Project Manager

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Ryan Turner Project ID: Chevron 9-2795

Sampled: 04/13/04

Report Number: IND0925

Received: 04/14/04

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D16013 Extracted: 04/16/04										
Blank Analyzed: 04/16/04 (4D16013-BI	K1)									
Volatile Fuel Hydrocarbons (C4-C12)	. ND	100	ug/kg							
Surrogate: Dibromofluoromethane	<i>54.5</i>		ug/kg	50.0		109	80-125			
Surrogate: Toluene-d8	51.8		ug/kg	50.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	50.1		ug/kg	50.0		100	80-120			
LCS Analyzed: 04/16/04 (4D16013-BS2)									
Volatile Fuel Hydrocarbons (C4-C12)	912	100	ug/kg	1000		91	65-120			
Surrogate: Dibromofluoromethane	49.0		ug/kg	50.0		98	<i>80-125</i>			
Surrogate: Toluene-d8	53.1		ug/kg	50.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	50.9		ug/kg	50.0		102	80-120			
Matrix Spike Analyzed: 04/16/04 (4D16	013-MS1)		•		Source: I	ND0816-3	8			
Volatile Fuel Hydrocarbons (C4-C12)	3080	100	ug/kg	2330	ND	132	60-135			
Surrogate: Dibromofluoromethane	56.9		ug/kg	52.0		109	<i>80-125</i>			
Surrogate: Toluene-d8	54.I		ug/kg	52.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	<i>57.3</i>		ug/kg	52.0		110	80-120			
Matrix Spike Dup Analyzed: 04/16/04 (4D16013-M	SD1)			Source: I	ND0816-3	8			
Volatile Fuel Hydrocarbons (C4-C12)	2890	120	ug/kg	. 2600	ND	111	60-135	6	20	
Surrogate: Dibromofluoromethane	66.3		ug/kg	58.I		114	80-125			
Surrogate: Toluene-d8	61.1		ug/kg	58.1		105	80-120			
Surrogate: 4-Bromofluorobenzene	62.6		ug/kg	58.I		108	80-120			

Del Mar Analytical, Irvine

Chris Roberts Project Manager

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108

Project ID: Chevron 9-2795

Sampled: 04/13/04

Attention: Ryan Turner

Report Number: IND0925

Received: 04/14/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D16013_Extracted: 04/16/04_										
Blank Analyzed: 04/16/04 (4D16013-Bl	LK1)									·
Benzene	ND	50	ug/kg							
Ethylbenzene	ND	50	ug/kg							
Toluene	ND	50	ug/kg							
o-Xylene	ND	50	ug/kg							
m,p-Xylenes	ND	100	ug/kg							
Xylenes, Total	ND	150	ug/kg							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/kg							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/kg							
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/kg							
Methyl-tert-butyl Ether (MTBE)	ND	10	ug/kg							
tert-Butanol (TBA)	ND	50	ug/kg							
Surrogate: Dibromofluoromethane	54.5	•	ug/kg	50.0		109	<i>80-125</i>			
Surrogate: Toluene-d8	51.8		ug/kg	50.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	50.1		ug/kg	50.0		100	80-120			
LCS Analyzed: 04/16/04 (4D16013-BS)	1)									
Benzene	39.6	50	ug/kg	50.0		79	70-120			
Ethylbenzene	47.9	50	ug/kg	50.0		96	75-125			
Toluene	43.1	50	ug/kg	50.0		86	75-120			
o-Xylene	47.9	50	ug/kg	50.0		96	75-125			
m,p-Xylenes	92.3	100	ug/kg	100		92	75-125			
Xylenes, Total	140	150	ug/kg	150		93	75-125			
Di-isopropyl Ether (DIPE)	38.6	5.0	ug/kg	50.0		77	65-135			
Ethyl tert-Butyl Ether (ETBE)	40.1	5.0	ug/kg	50.0		80	60-140			
tert-Amyl Methyl Ether (TAME)	38.5	5.0	ug/kg	50.0		77	60-140			
Methyl-tert-butyl Ether (MTBE)	37.7	10	ug/kg	50.0		75	55-145			
tert-Butanol (TBA)	287	50	ug/kg	250		115	70-140			
Surrogate: Dibromofluoromethane	55.8		ug/kg	50.0		112	<i>80-125</i>			
Surrogate: Toluene-d8	51.8		ug/kg	50.0		104	<i>80-120</i>			
Surrogate: 4-Bromofluorobenzene	55.8		ug/kg	50.0		112	80-120			

Del Mar Analytical, Irvine

Chris Roberts Project Manager

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Ryan Turner Project ID: Chevron 9-2795

Report Number: IND0925

Sampled: 04/13/04

Received: 04/14/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4D16013 Extracted: 04/16/04										
Matrix Spike Analyzed: 04/16/04 (4D1	6013-MS1)				Source: I	ND0816-3	8			
Benzene	58.6	50	ug/kg	52.0	ND	113	65-130			
Ethylbenzene	70.4	50	ug/kg	52.0	ND	135	70-130			MI
Toluene	62.7	50	ug/kg	52.0	ND	121	70-125			
o-Xylene	70.1	50	ug/kg	52.0	ND	135	70-125			MI
m,p-Xylenes	134	100	ug/kg	104	ND	129	70-125			M1
Xylenes, Total	204	150	ug/kg	156	ND	131	70-125			MI
Di-isopropyl Ether (DIPE)	53.6	5.0	ug/kg	52.0	ND	103	65-145			
Ethyl tert-Butyl Ether (ETBE)	52.3	5.0	ug/kg	52.0	ND	101	60-145			
tert-Amyl Methyl Ether (TAME)	50.6	5.0	ug/kg	52.0	ND	97	60-145			
Methyl-tert-butyl Ether (MTBE)	47.1	10	ug/kg	52.0	ND	91	50-150			
tert-Butanol (TBA)	500	50	ug/kg	260	ND	192	65-140			MI
Surrogate: Dibromofluoromethane	56.9		ug/kg	52.0		109	80-125			
Surrogate: Toluene-d8	5 4. 1		ug/kg	52.0		104	80-120			
Surrogate: 4-Bromofluorobenzene	57.3		ug/kg	52.0		110	80-120			ř
Matrix Spike Dup Analyzed: 04/16/04	(4D16013-MS	SD1)			Source: I	ND0816-3	8			
Benzene	52.4	58	ug/kg	58.1	ND	90	65-130	11	20	
Ethylbenzene	64.1	58	ug/kg	58.1	ND	110	70-130	9	20	
Toluene	57.3	58	ug/kg	58.1	ND	99	70-125	9	20	
o-Xylene	63.7	58	ug/kg	58.1	ND	110	70-125	10	20	
m,p-Xylenes	124	120	ug/kg	116	ND	107	70-125	8	20	
Xylenes, Total	187	170	ug/kg	174	ND	107	70-125	9	20	
Di-isopropyl Ether (DIPE)	50.9	5.8	ug/kg	58.1	ND	88	65-145	5	20	
Ethyl tert-Butyl Ether (ETBE)	52.0	5.8	ug/kg	58.1	ND	90	60-145	1	25	
tert-Amyl Methyl Ether (TAME)	50.1	5.8	ug/kg	58.1	ND	86	60-145	1	25	
Methyl-tert-butyl Ether (MTBE)	48.2	12	ug/kg	58.1	ND	83	50-150	2	25	
tert-Butanol (TBA)	369	58	ug/kg	291	ND	127	65-140	30	30	
Surrogate: Dibromofluoromethane	66.3		ug/kg	58.1		114	80-125			
Surrogate: Toluene-d8	61.1		ug/kg	58.I		105	80-120			
Surrogate: 4-Bromofluorobenzene	62.6		ug/kg	58.1		108	80-120			

Del Mar Analytical, Irvine

Chris Roberts Project Manager

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Ryan Turner Project ID: Chevron 9-2795

Sampled: 04/13/04

Report Number: IND0925

Received: 04/14/04

DATA QUALIFIERS AND DEFINITIONS

Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not

impacted.

The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M1 The Ma

 \mathbf{C}

ND

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 8260 analyses:

Due to the high water solubility of alcohols and ketones, the calibration criteria for these compounds is <30% RSD. The average % RSD of all compounds in the calibration is 15%, in accordance with EPA methods.

For Volatile Fuel Hydrocarbons (C4-C12):

Volatile Fuel Hydrocarbons (C4-C12) are quantitated against a gasoline standard. Quantitation begins immediately before TBA-d9.

Del Mar Analytical, Irvine Chris Roberts Project Manager

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

Attention: Ryan Turner

Project ID: Chevron 9-2795

Sampled: 04/13/04

San Diego, CA 92108

Report Number: IND0925

Received: 04/14/04

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	NELAP	CA
EPA 8260B	Soi1	X	x
TPH by GC/MS	Soil ·	X	X

NV and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

Del Mar Analytical, Irvine Chris Roberts Project Manager

Chevron Environmental Management Company = 145 S. State College Boulevard = Brea, CA 92822-2292

coc | of

Chevron Site Global ID: T0607399173	Chevron Consultant: SECOR International, Inc.	nt: SECOR Intern	lational, Inc.		•	1	NALY	ANALYSES REQUIRED	١,	INDO425
Chevron Site Number: 9-2795	Address: 2655 Camino Dei Rio N., Sie. 302, San Diego, CA 92108	lei Río N., Ste. 302, San	1 Diego, CA 92108				- ,			Special Instructions
	Consultant Contact:	t: Ryan Turner						. [
	Consultant Phone No. (619) 296-6195	No. (619) 296-619	2	<u></u> №3	:		ПА	3 838		
	Consultant Project No.	No. MTCH.92795.08	90	SCRE	DOVH		LINITY	Экем	<u>-</u>	
TOTAL STATE OF THE PROPERTY OF	Sampling Company: SECOR	y: SECOR		ЭН	8 2√2	۵°	∀ ΓK)/110	• •	
Chevron P.M.: SECUR: GO Madelane Montilia 2301 Leghorn, Mountain View, CA 94043	Sampled By (Print):	: Brian Londquist		□pi	BTAN:	718	1,01	1.51.		
Chevron MT PM Phone No.: (650) 691-0131 x 235	Sampler Signature:	A A	h	HdT [OXXGE	דוכ 🗀	E 443	þ ∀d∃		
MT Job No: MTCH.92795.08	Del Mar	Lancaster	EDF	ROE						Temp. Blank Check
Chevron Service Code: ZZ02800	Analytical	Laboratories	Required?		TM E		——— (TIVI)			
*Management Transfer – SO CA Portfolio Job	Mirvine, CA	C Lancaster, PA	s des		⊈ .×∃.		rona			
El Retail and Terminal Business Unit (RTBU) Job	Lab Contact:	Lab Contact: Teresa	<u>}</u>		T8 Å		СОИ			
NOTE: THIS IS A LEGAL DOCUMENT. ALL FIELDS MUST BE FILLED OUT CORRECTI Y AND COMPIFER Y	Phone No: □ (949) 261-1022 □ (909) 370-4667	Cunningham Phone No: □ (717) 656-2300		ORO 8 □ X∃T8	8-H9T	A, FE, K	PH []	□ наят		
SAMPLEID					90928		1.031			
Field Point Name Matrix Top Date	Sample Container Time Type	er # of Containers	Preservation		AGB					Notes/Comments
Ď	l ac	1	271							hsid
S 15')	(i	held
MW-0 S 26'	/ 22 vi									hold
5	/ OHO!)			X					
8	1047		_							hold
5	(65.7	•	~							huld
√MW-10 S 46° 4	م 1 <u>.01</u> 1	· →	→				\dashv			hold
Relinquished By Company	Date/Time: //⊄/nc/ /≂45	Relinquished To Date/Time: (P2)	Company	7.4	4/14/00	13 45	· · · · ·	Turnaround Time: 24 Hours		Standard 💢
d By Company	ا نِقِ ا	100	Company			<u>}</u>	T	48 hours		Other \square
1 om Devins	10 hol		A Common	50/3/ 50/3//		17:30	-			

J & L

COC Revision 9 - SECOR MT - SD.doc, 03/04

Prepared For: SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project: Chevron 9-2795

Sampled: 05/13/04 Received: 05/17/04

Issued: 05/28/04 15:33

NELAP #01108CA CA ELAP #1197 CSDLAC #10117

The results listed within this Laboratory Report pertain only to the samples tested in the laboratory. The analyses contained in this report were performed in accordance with the applicable certifications as noted. All soil samples are reported on a wet weight basis unless otherwise noted in the report. This Laboratory Report is confidential and is intended for the sole use of Del Mar Analytical and its client. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical. The Chain of Custody, 1 page, is included and is an integral part of this report.

This entire report was reviewed and approved for release.

SAMPLE CROSS REFERENCE

LABORATORY ID	CLIENT ID	MATRIX
INE0948-01	MW-1-W-040513	Water
INE0948-02	MW-2-W-040513	Water
INE0948-03	MW-3-W-040513	Water
INE0948-04	MW-4-W-040513	Water
INE0948-05	MW-5-W-040513	Water
INE0948-06	MW-6-W-040513	Water
INE0948-07	MW-7-W-040513	Water
INE0948-08	MW-8-W-040513	Water
INE0948-09	MW-9-W-040513	Water
INE0948-10	MW-10-W-040513	Water

Reviewed By:

Del Mar Analytical, Irvine Heather Bean For Chris Roberts Project Manager

Heather of bean

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

VOLATILE FUEL HYDROCARBONS BY GC/MS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: INE0948-01 (MW-1-W-040513 - Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	4E22014	50000	90000 112 % 112 % 110 %	100	5/22/2004	5/22/2004	
Sample ID: INE0948-02 (MW-2-W-040513 - Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	4E21016	500	540 112 % 105 % 101 %	1	5/21/2004	5/21/2004	
Sample ID: INE0948-03 (MW-3-W-040513 - Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	4E22014	10000	13000 116 % 112 % 109 %	20	5/22/2004	5/22/2004	
Sample ID: INE0948-04 (MW-4-W-040513 - Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	4E22014	5000	8800 114 % 112 % 112 %	10	5/22/2004	5/22/2004	
Sample ID: INE0948-05 (MW-5-W-040513 - Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	4E22012	50000	ND 112 % 106 % 103 %	100	5/22/2004	5/22/2004	
Sample ID: INE0948-06 (MW-6-W-040513 - Reporting Units: ug/l Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)	TPH by GC/MS	4E22012	5000	ND 114 % 108 % 105 %	10	5/22/2004	5/22/2004	

Del Mar Analytical, Irvine

Heather Bean For Chris Roberts

Project Manager

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

VOLATILE FUEL HYDROCARBONS BY GC/MS

Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: INE0948-07 (MW-7-W-040513 - Reporting Units: ug/l	·Water)							
Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%, Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)		4E23010	500	ND 117 % 110 % 109 %	1	5/23/2004	5/23/2004	
Sample ID: INE0948-08 (MW-8-W-040513 - Reporting Units: ug/l	·Water)							
Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%, Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)		4E21016	500	ND 106 % 107 % 101 %	1	5/21/2004	5/22/2004	
Sample ID: INE0948-09 (MW-9-W-040513 - Reporting Units: ug/l	·Water)							
Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)		4E21016	500	1500 108 % 104 % 104 %	1	5/21/2004	5/22/2004	
Sample ID: INE0948-10 (MW-10-W-040513 Reporting Units: ug/l	- Water)							
Volatile Fuel Hydrocarbons (C4-C12) Surrogate: Dibromofluoromethane (80-120%) Surrogate: Toluene-d8 (80-120%) Surrogate: 4-Bromofluorobenzene (80-120%)		4E21016	500	ND 108 % 108 % 103 %	1	5/21/2004	5/22/2004	

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

BTEX/OXYGENATES by GC/MS (EPA 8260B)

	DIEMOAI	GENALE	S by GC/I	A III) CIN	1200D)			
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	` Date Analyzed	Data Qualifiers
Sample ID: INE0948-01 (MW-1-W-040513 -	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E23010	250	8500	500	5/23/2004	5/23/2004	
Ethylbenzene	EPA 8260B	4E23010	250	3200	500	5/23/2004	5/23/2004	
Toluene	EPA 8260B	4E23010	250	37000	500	5/23/2004	5/23/2004	
o-Xylene	EPA 8260B	4E23010	250	6000	500	5/23/2004	5/23/2004	
m,p-Xylenes	EPA 8260B	4E23010	500	14000	500	5/23/2004	5/23/2004	
Xylenes, Total	EPA 8260B	4E23010	750	20000	500	5/23/2004	5/23/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E23010	2500	ND	500	5/23/2004	5/23/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E23010	2500	ND	500	5/23/2004	5/23/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E23010	2500	ND	500	5/23/2004	5/23/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E23010	500	ND	500	5/23/2004	5/23/2004	
tert-Butanol (TBA)	EPA 8260B	4E23010	12000	ND	500	5/23/2004	5/23/2004	
Surrogate: Dibromofluoromethane (80-120%)				118 %				
Surrogate: Toluene-d8 (80-120%)				110 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				110 %				
Sample ID: INE0948-02 (MW-2-W-040513 -	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E21016	0.50	92	1	5/21/2004	5/21/2004	
Ethylbenzene	EPA 8260B	4E21016	0.50	32	1	5/21/2004	5/21/2004	
Toluene	EPA 8260B	4E21016	0.50	54	1	5/21/2004	5/21/2004	
o-Xylene	EPA 8260B	4E21016	0.50	36	1	5/21/2004	5/21/2004	
m,p-Xylenes	EPA 8260B	4E21016	1 .0	140	1	5/21/2004	5/21/2004	
Xylenes, Total	EPA 8260B	4E21016	1.5	170	1	5/21/2004	5/21/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/21/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/21/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/21/2004	M1
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E21016	1.0	ND	1	5/21/2004	5/21/2004	M1
tert-Butanol (TBA)	EPA 8260B	4E21016	25	73	1	5/21/2004	5/21/2004	
Surrogate: Dibromofluoromethane (80-120%)				112 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Surrogate: 4-Bromofluorobenzene (80-120%)			•	101 %				

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

BTEX/OXYGENATES by GC/MS (EPA 8260B)

•	DIEWOYI		o by GC/1	is (El A c	2001)	•		
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: INE0948-03 (MW-3-W-040513 - V	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E22014	10	500	20	5/22/2004	5/22/2004	
Ethylbenzene	EPA 8260B	4E22014	10	640	20	5/22/2004	5/22/2004	
Toluene	EPA 8260B	4E22014	10	2500	20	5/22/2004	5/22/2004	
o-Xylene	EPA 8260B	4E22014	10	1000	20	5/22/2004	5/22/2004	
m,p-Xylenes	EPA 8260B	4E22014	20	2500	20	5/22/2004	5/22/2004	
Xylenes, Total	EPA 8260B	4E22014	30	3500	20	5/22/2004	5/22/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E22014	100	ND	20	5/22/2004	5/22/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E22014	100	ND	20	5/22/2004	5/22/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E22014	100	ND	20	5/22/2004	5/22/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E22014	20	ND	20	5/22/2004	5/22/2004	
tert-Butanol (TBA)	EPA 8260B	4E22014	500	ND	20	5/22/2004	5/22/2004	
Surrogate: Dibromofluoromethane (80-120%)				116%				
Surrogate: Toluene-d8 (80-120%)				112 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				109 %				
Sample ID: INE0948-04 (MW-4-W-040513 - 1	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E23010	20	370	40	5/23/2004	5/23/2004	
Ethylbenzene	EPA 8260B	4E23010	20	400	40	5/23/2004	5/23/2004	
Toluene	EPA 8260B	4E23010	20	2600	40	5/23/2004	5/23/2004	
o-Xylene	EPA 8260B	4E23010	20	690	40	5/23/2004	5/23/2004	
m,p-Xylenes	EPA 8260B	4E23010	40	1700	40	5/23/2004	5/23/2004	
Xylenes, Total	EPA 8260B	4E23010	60	2400	40	5/23/2004	5/23/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E23010	200	ND	40	5/23/2004	5/23/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E23010	200	ND	40	5/23/2004	5/23/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E23010	200	ND	40	5/23/2004	5/23/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E23010	40	ND	40	5/23/2004	5/23/2004	
tert-Butanol (TBA)	EPA 8260B	4E23010	1000	ND	40	5/23/2004	5/23/2004	
Surrogate: Dibromofluoromethane (80-120%)				116%				
Surrogate: Toluene-d8 (80-120%)				110 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				113 %				

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

BTEX/OXYGENATES by GC/MS (EPA 8260B)

			Reporting	Sample	Dilution	Date	Date	Data
Analyte	Method	Batch	Limit	Result	Factor	Extracted	Analyzed	Qualifiers
Sample ID: INE0948-05 (MW-5-W-040513 -	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E23008	200	6000	400	5/23/2004	5/23/2004	
Ethylbenzene	EPA 8260B	4E23008	200	1600	400	5/23/2004	5/23/2004	
Toluene	EPA 8260B	4E23008	200	20000	400	5/23/2004	5/23/2004	
o-Xylene	EPA 8260B	4E23008	200	3000	400	5/23/2004	5/23/2004	
m,p-Xylenes	EPA 8260B	4E23008	400	6900	400	5/23/2004	5/23/2004	
Xylenes, Total	EPA 8260B	4E23008	600	9900	400	5/23/2004	5/23/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E23008	2000	ND	400	5/23/2004	5/23/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E23008	2000	ND	400	5/23/2004	5/23/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E23008	2000	ND	400	5/23/2004	5/23/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E23008	400	ND	400	5/23/2004	5/23/2004	
tert-Butanol (TBA)	EPA 8260B	4E23008	10000	ND	400	5/23/2004	5/23/2004	
Surrogate: Dibromofluoromethane (80-120%)				114 %				
Surrogate: Toluene-d8 (80-120%)				105 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				104 %				
Sample ID: INE0948-06 (MW-6-W-040513 -	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E22012	5.0	220	10	5/22/2004	5/22/2004	
Ethylbenzene	EPA 8260B	4E22012	5.0	110	10	5/22/2004	5/22/2004	
Toluene	EPA 8260B	4E22012	5.0	1000	10	5/22/2004	5/22/2004	
o-Xylene	EPA 8260B	4E22012	5.0	210	10	5/22/2004	5/22/2004	
m,p-Xylenes	EPA 8260B	4E22012	10	470	10	5/22/2004	5/22/2004	
Xylenes, Total	EPA 8260B	4E22012	15	680	10	5/22/2004	5/22/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E22012	50	ND	10	5/22/2004	5/22/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E22012	50	ND	10	5/22/2004	5/22/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E22012	50	ND	10	5/22/2004	5/22/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E22012	10	ND	10	5/22/2004	5/22/2004	
tert-Butanol (TBA)	EPA 8260B	4E22012	250	1000	10	5/22/2004	5/22/2004	
Surrogate: Dibromofluoromethane (80-120%)				114%				
Surrogate: Toluene-d8 (80-120%)				108 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				105 %				

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

BTEX/OXYGENATES by GC/MS (EPA 8260B)

•	DIEZE OZEI	11 11 11 11 11 11 11 11 11 11 11 11 11	by GC.I	, LD (LL 11 C	,_00.27			
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: INE0948-07 (MW-7-W-040513 - V	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E23010	0.50	1.5	1	5/23/2004	5/23/2004	
Ethylbenzene	EPA 8260B	4E23010	0.50	0.61	1	5/23/2004	5/23/2004	
Toluene	EPA 8260B	4E23010	0.50	3.2	1	5/23/2004	5/23/2004	
o-Xylene	EPA 8260B	4E23010	0.50	ND	1	5/23/2004	5/23/2004	
m,p-Xylenes	EPA 8260B	4E23010	1.0	3.1	1	5/23/2004	5/23/2004	
Xylenes, Total	EPA 8260B	4E23010	1.5	3.5	1	5/23/2004	5/23/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E23010	5.0	ND	1	5/23/2004	5/23/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E23010	5.0	ND	1	5/23/2004	5/23/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E23010	5.0	ND	1	5/23/2004	5/23/20.04	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E23010	1.0	ND	1	5/23/2004	5/23/2004	
tert-Butanol (TBA)	EPA 8260B	4E23010	25	66	1	5/23/2004	5/23/2004	
Surrogate: Dibromofluoromethane (80-120%)				117%				
Surrogate: Toluene-d8 (80-120%)				110 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				109 %				
Sample ID: INE0948-08 (MW-8-W-040513 - V	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
Ethylbenzene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
Toluene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
o-Xylene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
m,p-Xylenes	EPA 8260B	4E21016	1.0	ND	1	5/21/2004	5/22/2004	
Xylenes, Total	EPA 8260B	4E21016	1.5	ND	1	5/21/2004	5/22/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E21016	1.0	ND	1	5/21/2004	5/22/2004	
tert-Butanol (TBA)	EPA 8260B	4E21016	25	ND	1	5/21/2004	5/22/2004	
Surrogate: Dibromofluoromethane (80-120%)				106 %				
Surrogate: Toluene-d8 (80-120%)				107 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				101 %				

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

BTEX/OXYGENATES by GC/MS (EPA 8260B)

			•	`	•			
Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
Sample ID: INE0948-09 (MW-9-W-040513 -	Water)							HS
Reporting Units: ug/l								
Benzene	EPA 8260B	4E24016	5.0	220	10	5/24/2004	5/24/2004	
Toluene	EPA 8260B	4E24016	5.0	740	10	5/24/2004	5/24/2004	
o-Xylene	EPA 8260B	4E24016	5.0	190	10	5/24/2004	5/24/2004	
m,p-Xylenes	EPA 8260B	4E24016	10	430	10	5/24/2004	5/24/2004	•
Xylenes, Total	EPA 8260B	4E24016	15	620	10	5/24/2004	5/24/2004	
Surrogate: Dibromofluoromethane (80-120%)				101 %				
Surrogate: Toluene-d8 (80-120%)				102 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				101 %				
Sample ID: INE0948-09RE1 (MW-9-W-0405)	13 - Water)							
Reporting Units: ug/l								
Ethylbenzene	EPA 8260B	4E21016	0.50	78	1	5/21/2004	5/22/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E21016	1.0	ND	1	5/21/2004	5/22/2004	
tert-Butanol (TBA)	EPA 8260B	4E21016	25	590	1	5/21/2004	5/22/2004	
Surrogate: Dibromofluoromethane (80-120%)				108 %				
Surrogate: Toluene-d8 (80-120%)				104 %				
Surrogate: 4-Bromofluorobenzene (80-120%)	•			104 %				
Sample ID: INE0948-10 (MW-10-W-040513 -	Water)							
Reporting Units: ug/l								
Benzene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
Ethylbenzene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
Toluene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
o-Xylene	EPA 8260B	4E21016	0.50	ND	1	5/21/2004	5/22/2004	
m,p-Xylenes	EPA 8260B	4E21016	1.0	ND	1	5/21/2004	5/22/2004	
Xylenes, Total	EPA 8260B	4E21016	1.5	ND	1	5/21/2004	5/22/2004	
Di-isopropyl Ether (DIPE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
Ethyl tert-Butyl Ether (ETBE)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
tert-Amyl Methyl Ether (TAME)	EPA 8260B	4E21016	5.0	ND	1	5/21/2004	5/22/2004	
Methyl-tert-butyl Ether (MTBE)	EPA 8260B	4E21016	1.0	ND	1	5/21/2004	5/22/2004	
tert-Butanol (TBA)	EPA 8260B	4E21016	25	ND	1	5/21/2004	5/22/2004	
Surrogate: Dibromofluoromethane (80-120%)				108 %				
Surrogate: Toluene-d8 (80-120%)				108 %				
Surrogate: 4-Bromofluorobenzene (80-120%)				103 %				

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS

	<u> </u>	Reporting	T T 14	Spike	Source	A/DEG	%REC	nnn	RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E21016 Extracted: 05/21/04										
Blank Analyzed: 05/21/04 (4E21016-BL	K1)									,
Volatile Fuel Hydrocarbons (C4-C12)	ND	500	ug/l							
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	<i>26.3</i>	•	ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	26.2		ug/l	25.0		105	80-120			
LCS Analyzed: 05/21/04 (4E21016-BS2)	l									
Volatile Fuel Hydrocarbons (C4-C12)	364	500	ug/l	500		73	65-120			M-3
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-12 0			
Surrogate: 4-Bromofluorobenzene	26.2		ug/l	25.0	•	105	80-120			
Batch: 4E22012 Extracted: 05/22/04										
Blank Analyzed: 05/22/04 (4E22012-BL	K1)									
Volatile Fuel Hydrocarbons (C4-C12)	ND	500	ug/l							
Surrogate: Dibromofluoromethane	26.4		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25,2		ug/l	25.0		101	80-120			
LCS Analyzed: 05/22/04 (4E22012-BS2))									
Volatile Fuel Hydrocarbons (C4-C12)	353	500	ug/l	500		71	65-120			
Surrogate: Dibromofluoromethane	26.4		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	25.9		ug/l	25.0		104	80-120			
Matrix Spike Analyzed: 05/22/04 (4E22	012-MS1)				Source: I	NE0949-0	2			
Volatile Fuel Hydrocarbons (C4-C12)	840	500	ug/l	1120	28	72	60-135			
Surrogate: Dibromofluoromethane	26.7		ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	<i>26</i> .8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	<i>80-120</i>			•

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E22012 Extracted: 05/22/04										
Matrix Spike Dup Analyzed: 05/22/04	<i>4 (4</i>)E22012_M/S	D1)			Source: T	NE0949-0	2			
Volatile Fuel Hydrocarbons (C4-C12)	916	500	ug/l	1120	28	79	60-135	9	20	
Surrogate: Dibromofluoromethane	26.5	200	ug/l	25.0	20	106	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.3		ug/l	25.0		101	80-120			
Batch: 4E22014 Extracted: 05/22/04	-									
Blank Analyzed: 05/22/04 (4E22014-	·BLK1)									
Volatile Fuel Hydrocarbons (C4-C12)	ND	500	ug/l	•						
Surrogate: Dibromofluoromethane	27.3		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	27.9		ug/l	25.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	26.4		ug/l	25.0		106	80-120			
LCS Analyzed: 05/22/04 (4E22014-B	S2)									
Volatile Fuel Hydrocarbons (C4-C12)	437	500	ug/l	500		87	65-120			
Surrogate: Dibromofluoromethane	28.3		ug/l	25.0		113	<i>80-120</i>			
Surrogate: Toluene-d8	28.0		ug/l	25.0		112	<i>80-120</i>			
Surrogate: 4-Bromofluorobenzene	28.4		ug/l	25.0		114	80-120			
Matrix Spike Analyzed: 05/22/04 (4F	E22014-MS1)				Source: I	NE0907-0	7			
Volatile Fuel Hydrocarbons (C4-C12)	1200	500	ug/l	1120	ND	107	60-135			
Surrogate: Dibromofluoromethane	27.8		ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	28.0		ug/l	25.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	28.4		ug/l	25.0		114	80-120			
Matrix Spike Dup Analyzed: 05/22/0	4 (4E22014-MS	D 1)			Source: I	NE0907-0	7			
Volatile Fuel Hydrocarbons (C4-C12)	1160	500	ug/l	1120	ND	104	60-135	3	20	
Surrogate: Dibromofluoromethane	<i>29.2</i>		ug/l	25.0		117	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	28.8		ug/l	25.0		115	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

VOLATILE FUEL HYDROCARBONS BY GC/MS

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E23010 Extracted: 05/23/04										
Blank Analyzed: 05/23/04 (4E23010-BL	TZ1\									
Volatile Fuel Hydrocarbons (C4-C12)	ND	500	ug/l							
	27.5	500	_	25.0		110	80-120			
Surrogate: Dibromofluoromethane			ug/l							
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	26.0		ug/l	<i>25.0</i>		104	80-120			
LCS Analyzed: 05/23/04 (4E23010-BS2))									
Volatile Fuel Hydrocarbons (C4-C12)	416	500	ug/l	500		83	65-120			
Surrogate: Dibromofluoromethane	28.2		ug/l	25.0		113	80-120			
Surrogate: Toluene-d8	28.2		ug/l	25.0		113	80-120			
Surrogate: 4-Bromofluorobenzene	27.4		ug/l	<i>25.0</i>		110	80-120			
Matrix Spike Analyzed: 05/23/04 (4E23	010-MS1)				Source: I	NE0949-0	4			
Volatile Fuel Hydrocarbons (C4-C12)	1010	500	ug/l	1120	ND	90	60-135			
Surrogate: Dibromofluoromethane	27.3		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	27.9		ug/l	25.0		112	80-120			
Matrix Spike Dup Analyzed: 05/23/04 (4	4E23010-MS	SD1)			Source: I	NE0949-0	4			
Volatile Fuel Hydrocarbons (C4-C12)	1070	500	ug/l	1120	ND	96	60-135	6	20	
Surrogate: Dibromofluoromethane	28.7		ug/l	25.0		115	80-120			4
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	28. I		ug/l	25.0		112	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

•		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E21016 Extracted: 05/21/04										
Blank Analyzed: 05/21/04 (4E21016-BI	LK1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/I							
Xylenes, Total	ND	1.5	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/I							
tert-Butanol (TBA)	ND	25	ug/l							
Surrogate: Dibromofluoromethane	<i>26.5</i>		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	<i>26.3</i>		ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	26.2		ug/l	25.0		105	80-120			
LCS Analyzed: 05/21/04 (4E21016-BS)	1)									
Benzene	25.6	0.50	ug/l	25.0		102	70-120			M-3
Ethylbenzene	26.3	0.50	ug/l	25.0		105	80-120			
Toluene	26.1	0,50	ug/l	25.0		104	70-120			
o-Xylene	26.2	0.50	ug/l	25.0		105	75-125			
m,p-Xylenes	52.9	1.0	ug/l	50.0		106	70-120			
Xylenes, Total	79.0	1.5	ug/l	75.0		105	70-120			
Di-isopropyl Ether (DIPE)	24.4	5.0	ug/l	25.0		98	65-135			
Ethyl tert-Butyl Ether (ETBE)	24.2	5.0	ug/l	25.0		97	60-140			
tert-Amyl Methyl Ether (TAME)	24.5	5.0	ug/l	25.0		98	60-140			
Methyl-tert-butyl Ether (MTBE)	22,9	1.0	ug/l	25.0		92	55-145			
tert-Butanol (TBA)	138	25	ug/i	125		110	70-140			
Surrogate: Dibromofluoromethane	25.8		ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	26.9		ug/l	25.0		108	<i>80-120</i>			
Surrogate: 4-Bromofluorobenzene	25.2		ug/l	25.0		101	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E21016 Extracted: 05/21/04										
35 4 to College to Long 3, 05/31/04 (4E31	1016 3401)				Сописот Т	NE0948-0:	,			
Matrix Spike Analyzed: 05/21/04 (4E21	55.3	0.50	ug/l	25.0	32	93	70-125			
Ethylbenzene			-	25.0	52 54	80	65-120			
Toluene	74.0	0.50	ug/l	25.0 25.0	36	104	65-125			
o-Xylene	62.1	0.50	ug/l	<i>23.</i> 0 50.0	140	70	60-125			
m,p-Xylenes	175	1.0	ug/l		170	70 89	60-125			
Xylenes, Total	237	1.5	ug/I	75.0			65-140			
Di-isopropyl Ether (DIPE)	31.2	5.0	ug/l	25.0	ND	125				
Ethyl tert-Butyl Ether (ETBE)	34.1	5.0	ug/l	25.0	ND	136	60-140			M1
tert-Amyl Methyl Ether (TAME)	38.0	5.0	ug/l	25.0	ND	152	55-145			
Methyl-tert-butyl Ether (MTBE)	38.1	1.0	ug/l	25.0	ND	152	50-150			M1 .
tert-Butanol (TBA)	208	25	ug/l	125	73	108	65-145			
Surrogate: Dibromofluoromethane	26.9		ug/l	25.0		108	80-120			•
Surrogate: Toluene-d8	<i>26.8</i>		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	26.6		ug/l	25.0		106	80-120			
Matrix Spike Dup Analyzed: 05/21/04	(4E21016-MS	S D1)			Source: I	NE0948-0	2			
Ethylbenzene	57.0	0.50	ug/l	25.0	32	100	70-125	3	20	
Toluene	76.3	0.50	ug/l	25.0	54	89	65-120	3	20	
o-Xylene	63.7	0.50	ug/l	25.0	36	111	65-125	3	20	
m,p-Xylenes	182	1.0	ug/l	50.0	140	84	60-125	4	25	
Xylenes, Total	246	1.5	ug/l	75.0	170	101	60-135	4	20	
Di-isopropyl Ether (DIPE)	30.8	5.0	ug/l	25.0	ND	123	65-140	1	25	
Ethyl tert-Butyl Ether (ETBE)	34.7	5.0	ug/l	25.0	ND	139	60-140	2	25	
tert-Amyl Methyl Ether (TAME)	38.3	5.0	ug/l	25.0	ND	153	55-145	1	25	M1
Methyl-tert-butyl Ether (MTBE)	38.2	1.0	ug/l	25.0	ND	153	50-150	0	25	MI
tert-Butanol (TBA)	202	25	ug/l	125	73	103	65-145	3	25	
Surrogate: Dibromofluoromethane	27.0		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	26.5		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	26.8		ug/l	25.0		107	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E22012 Extracted: 05/22/04										
Blank Analyzed: 05/22/04 (4E22012-BI	.K1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND .	1.0	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/l						•	
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
tert-Butanol (TBA)	ND	25	ug/l							
Surrogate: Dibromofluoromethane	26.4		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.8		ug/I	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25,2		ug/l	25.0		101	80-120			
LCS Analyzed: 05/22/04 (4E22012-BS1)			•						
Benzene	24.1	0.50	ug/l	25.0		96	70-120			
Ethylbenzene	24.9	0.50	ug/l	25.0		100	80-120			
Toluene	24.6	0.50	ug/l	25.0		98	70-120			
o-Xylene	24.9	0.50	ug/l	25.0		100	75-125			
m,p-Xylenes	49.6	1.0	ug/l	50.0		99	70-120			
Xylenes, Total	74.5	1.5	ug/l	75.0		99	70-120			
Di-isopropyl Ether (DIPE)	24.8	5.0	ug/l	25.0		99	65-135			
Ethyl tert-Butyl Ether (ETBE)	26.6	5.0	ug/l	25.0		106	60-140			
tert-Amyl Methyl Ether (TAME)	28.2	5.0	ug/l	25.0		113	60-140			
Methyl-tert-butyl Ether (MTBE)	27.4	1.0	ug/l	25.0		110	55-145			
tert-Butanol (TBA)	122	25	ug/l	125		98	70-140			
Surrogate: Dibromofluoromethane	26.3		ug/l	25.0		105	80-120			
Surrogate: Toluene-d8	26.4		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	26.2		ug/l	25.0		105	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E22012 Extracted: 05/22/04										
Matrix Spike Analyzed: 05/22/04 (4E2	2012-MS1)				Source: I	NE0949-0	2			
Benzene	23.6	0.50	ug/l	25.0	ND	94	70-120			
Ethylbenzene	24.2	0.50	ug/l	25.0	ND	97	70-125			
Toluene	24.0	0.50	ug/l	25.0	ND	96	65-120			
o-Xylene	23.9	0.50	ug/l	25.0	ND	96	65-125			
m,p-Xylenes	47.0	1.0	ug/l	50.0	ND	94	60-125			
Xylenes, Total	71.0	1.5	ug/l	75.0	ND	95	60-135			
Di-isopropyl Ether (DIPE)	23.5	5.0	ug/l	25.0	ND	94	65-140			
Ethyl tert-Butyl Ether (ETBE)	24.7	5.0	ug/l	25.0	ND	99	60-140			·
tert-Amyl Methyl Ether (TAME)	25.4	5.0	ug/l	25.0	ND	102	55-145			
Methyl-tert-butyl Ether (MTBE)	24.7	1.0	ug/l	25.0	0.59	96	50-150			
tert-Butanol (TBA)	132	25	ug/l	125	ND	106	65-145			
Surrogate: Dibromofluoromethane	26.7		ug/l	25.0		107	80-120			
Surrogate: Toluene-d8	<i>26.8</i>		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	80-120			
Matrix Spike Dup Analyzed: 05/22/04	(4E22012-MS	SD1)			Source: I	NE0949-0	2			
Benzene	25.2	0.50	uġ/l	25,0	ND	101	70-120	7	20	
Ethylbenzene	25.7	0.50	ug/l	25.0	ND	103	70-125	6	20	
Toluene	25.8	0.50	ug/l	25,0	ND	103	65-120	7	20	
o-Xylene	25.8	0.50	ug/l	25.0	ND	103	65-125	8	20	
m,p-Xylenes	51.1	1.0 .	ug/l	50.0	ND	102	60-125	8	25	
Xylenes, Total	76.9	1.5	ug/l	75.0	ND	103	60-135	8	20	
Di-isopropyl Ether (DIPE)	25.9	5.0	ug/l	25.0	ND	104	65-140	10	25	
Ethyl tert-Butyl Ether (ETBE)	26.9	5.0	ug/l	25.0	ND	108	60-140	9	25	
tert-Amyl Methyl Ether (TAME)	28.1	5.0	ug/l	25.0	ND	112	55-145	10	25	
Methyl-tert-butyl Ether (MTBE)	27.9	1.0	ug/l	25.0	0.59	109	50-150	12	25	
tert-Butanol (TBA)	138	25	ug/l	125	ND	110	65-145	4	25	
Surrogate: Dibromofluoromethane	26.5		ug/l	25.0		106	80-120			
Surrogate: Toluene-d8	26.8		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.3		ug/l	25.0		101	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analytė	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E22014 Extracted: 05/22/04	•									
Blank Analyzed: 05/22/04 (4E22014-BL	K1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l		•					
Toluene	ND	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l				•!			
Xylenes, Total	ND	1.5	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/I							
tert-Butanol (TBA)	ND	25	ug/l							
Surrogate: Dibromofluoromethane	27. 3		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	27.9		ug/l	25.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	26.4		ug/l	25.0		106	80-120			-
LCS Analyzed: 05/22/04 (4E22014-BS1)									
Benzene	22.8	0.50	ug/l	25.0		91	70-120			
Ethylbenzene	25.3	0.50	ug/l	25.0		101	80-120			
Toluene	24.5	0.50	ug/l	25.0		98	70-120			
o-Xylene	24.2	0.50	ug/l	25.0		97	75-125			
m,p-Xylenes	49.3	1.0	ug/l	50.0		99	70-120			
Xylenes, Total	73.5	1.5	ug/I	75.0		98	70-120			
Di-isopropyl Ether (DIPE)	26.2	5.0	ug/l	25.0		105	65-135			
Ethyl tert-Butyl Ether (ETBE)	26.8	5.0	ug/l	25.0		107	60-140			
tert-Amyl Methyl Ether (TAME)	26.2	5.0	ug/l	25.0		105	60-140			
Methyl-tert-butyl Ether (MTBE)	25.6	1.0	ug/l	25.0		102	55-145			
tert-Butanol (TBA)	123	25	ug/I	125		98	70-140			
Surrogate: Dibromofluoromethane	28.2		ug/l	25.0		113	80-120			
Surrogate: Toluene-d8	28.2		ug/l	25.0		113	80-120			
Surrogate: 4-Bromofluorobenzene	28.4		ug/l	25.0	•	114	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Batch: 4E22014 Extracted: 05/22/04										
	101 (3 EC(1)				C	NTERRORE O				
Matrix Spike Analyzed: 05/22/04 (4E22	-	0.70	0	25.0		NE0907-0				
Benzene	25.1	0.50	ug/l	25.0	ND	100	70-120			
Ethylbenzene	28.7	0.50	ug/l	25.0	ND	115	70-125			
Toluene	27.4	0.50	ug/l	25.0	ND	110	65-120			
o-Xylene	27.6	0,50	ug/l	25.0	ND	110	65-125			
m,p-Xylenes	54.9	1.0	ug/l	50.0	ND	110	60-125			
Xylenes, Total	82.4	1.5	ug/l	75.0	ND	110	60-135			
Di-isopropyl Ether (DIPE)	27.3	5,0	ug/l	25.0	ND	109	65-140			
Ethyl tert-Butyl Ether (ETBE)	26.0	5.0	ug/l	25.0	ND	104	60-140			
tert-Amyl Methyl Ether (TAME)	23.9	5,0	ug/l	25.0	ND	96	55-145			
Methyl-tert-butyl Ether (MTBE)	22.7	1.0	ug/l	25.0	ND	91	50-150			
tert-Butanol (TBA)	156	25	ug/l	125	ND	125	65-145			
Surrogate: Dibromofluoromethane	27.8		ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	28.0		ug/l	25.0		112	80-120			
Surrogate: 4-Bromofluorobenzene	28.4		ug/l	25.0		114	80-120			
Matrix Spike Dup Analyzed: 05/22/04	(4E22014-MS	(D 1)			Source: I	NE0907-0	7			
Benzene	23.4	0.50	ug/l	25.0	ND	94	70-120	7	20	
Ethylbenzene	26.0	0.50	ug/l	25.0	ND	104	70-125	10	20	
Toluene	25.2	0.50	ug/l	25.0	ND	101	65-120	8	20	
o-Xylene	24.9	0.50	ug/l	25.0	ND	100	65-125	10	20	
m,p-Xylenes	49.7	1.0	ug/l	50.0	ND	99	60-125	10	25	
Xylenes, Total	74.5	1.5	ug/l	75.0	ND	99	60-135	10	20	
Di-isopropyl Ether (DIPE)	27.5	5.0	ug/l	25.0	ND	110	65-140	1	25	
Ethyl tert-Butyl Ether (ETBE)	28.6	5.0	ug/l	25.0	ND	114	60-140	10	25	
tert-Amyl Methyl Ether (TAME)	28.2	5.0	ug/l	25.0	ND	113	55-145	17	25	
Methyl-tert-butyl Ether (MTBE)	28.2	1.0	ug/l	25.0	ND	113	50-150	22	25	
tert-Butanol (TBA)	120	25	ug/l	125	ND	96	65-145	26	25	R
Surrogate: Dibromofluoromethane	29.2		ug/l	25.0		117	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	28.8		ug/l	25.0		115	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting	TT •	Spike	Source	A/DEG	%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E23008 Extracted: 05/23/04										
Blank Analyzed: 05/23/04 (4E23008-BL	K1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							·
Toluene	ND	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
tert-Butanol (TBA)	ND	25	ug/l							
Surrogate: Dibromofluoromethane	26.4		ug/I	25.0	•	106	80-120			
Surrogate: Toluene-d8	26.6		ug/l	25.0		106	80-120			
Surrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	80-120			
LCS Analyzed: 05/23/04 (4E23008-BS1))						•			
Benzene	23.0	0.50	ug/l	25.0		92	70-120			
Ethylbenzene	23.9	0.50	ug/l '	25.0		96	80-120			
Toluene	23.4	0.50	ug/l	25.0		94	70-120			
o-Xylene	24.2	0.50	ug/l	25.0		97	75-125			
m,p-Xylenes	48.1	1.0	ug/l	50.0		96	70-120			
Xylenes, Total	72.3	1.5	ug/l	75.0		96	70-120			
Di-isopropyl Ether (DIPE)	25.6	5.0	ug/l	25.0		102	65-135			
Ethyl tert-Butyl Ether (ETBE)	27.7	5.0	ug/l	25.0		111	60-140			
tert-Amyl Methyl Ether (TAME)	29.4	5.0	ug/l	25.0		118	60-140			
Methyl-tert-butyl Ether (MTBE)	29,2	1.0	ug/l	25.0		117	55-145			
tert-Butanol (TBA)	115	25	ug/l	125		92	70-140			
Surrogate: Dibromofluoromethane	27.7	*	ug/l	25.0		111	80-120			
Surrogate: Toluene-d8	26.3		ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	25.6		ug/l	25.0		102	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
Batch: 4E23008 Extracted: 05/23/04						,				
Matrix Spike Analyzed: 05/23/04 (4E2	23008-MS1)				Source: I	NE0923-0	2			
Benzene	24.0	0.50	ug/l	25.0	ND	96	70-120			
Ethylbenzene	26.1	0.50	ug/l	25.0	ND	104	70-125			
Toluene	24.4	0.50	ug/l	25.0	ND	98	65-120			
o-Xylene	25.7	0.50	ug/l	25.0	ND	103	65-125			
m,p-Xylenes	58.1	1.0	ug/l	50.0	ND	116	60-125			
Xylenes, Total	83.8	1.5	ug/l	75.0	ND	112	60-135			
Di-isopropyl Ether (DIPE)	19.2	5.0	ug/l	25.0	ND	77	65-140			
Ethyl tert-Butyl Ether (ETBE)	17.0	5.0	ug/l	25.0	ND	68	60-140			
tert-Amyl Methyl Ether (TAME)	16.0	5.0	ug/l	25.0	ND	64	55-145			
Methyl-tert-butyl Ether (MTBE)	17.1	1.0	ug/l	25.0	3.0	56	50-150			
tert-Butanol (TBA)	88.8	25	ug/l	125	ND	71	65-145			
Surrogate: Dibromofluoromethane	24.2		ug/l	25.0		97	80-120			
Surrogate: Toluene-d8	26.2		ug/l	25.0		105	80-120			
Surrogate: 4-Bromofluorobenzene	24.0		ug/l	25.0		96	80-120			
Matrix Spike Dup Analyzed: 05/23/04	(4E23008-MS	SD1)			Source: I	NE0923-0	2			
Benzene	25.6	0.50	ug/l	25.0	ND	102	70-120	6	20	
Ethylbenzene	26.3	0.50	ug/l	25.0	ND	105	70-125	1	20	
Toluene	26.0	0.50	ug/l	25.0	ND	104	65-120	6	20	
o-Xylene	26.6	0.50	ug/l	25.0	ND	106	65-125	3	20	
m,p-Xylenes	52.0	1.0	ug/l	50.0	ND	104	60-125	11	25	
Xylenes, Total	78.6	1.5	ug/l	75.0	ND	105	60-135	6	20	
Di-isopropyl Ether (DIPE)	26.3	5.0	ug/l	25.0	ND	105	65-140	31	25	R
Ethyl tert-Butyl Ether (ETBE)	28.1	5.0	ug/l	25.0	ND	112	60-14Ó	49	25	R
tert-Amyl Methyl Ether (TAME)	28.9	5.0	ug/l	25.0	ND	116	55-145	57	25	R
Methyl-tert-butyl Ether (MTBE)	30.7	1.0	ug/l	25,0	3.0	111	50-150	57	25	R
tert-Butanol (TBA)	120	25	ug/l	125	ND	96	65-145	30	25	${\it R}$
Surrogate: Dibromofluoromethane	26.9		ug/l	25.0		108	80-120			
Surrogate: Toluene-d8	26.7		ug/l	25.0		107	80-120			
Surrogate: 4-Bromofluorobenzene	25.7		ug/l	25.0		103	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E23010 Extracted: 05/23/04										
				ι						
Blank Analyzed: 05/23/04 (4E23010-BI	LK1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/l							
tert-Butanol (TBA)	ND .	25	ug/l							
Surrogate: Dibromofluoromethane	27.5		ug/l	25.0		110	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-120			
Surrogate: 4-Bromofluorobenzene	26.0		ug/l	25.0		104	80-120			
LCS Analyzed: 05/23/04 (4E23010-BS1	.)									
Benzene	21.6	0.50	ug/l	25.0		86	70-120			
Ethylbenzene	24.2	0.50	ug/l	25.0		97	80-120			
Toluene	23.0	0.50	ug/l	25.0		92	70-120			
o-Xylene	23.1	0.50	ug/l	25.0		92	75-125			
m,p-Xylenes	46.7	1.0	ug/l	50.0		93	70-120			
Xylenes, Total	69.8	1.5	ug/l	75.0		93	70-120			
Di-isopropyl Ether (DIPE)	24.8	5.0	ug/l	25.0		99	65-135			
Ethyl tert-Butyl Ether (ETBE)	25,5	5.0	ug/l	25.0		102	60-140			
tert-Amyl Methyl Ether (TAME)	24.9	5.0	ug/l	25.0		100	60-140			
Methyl-tert-butyl Ether (MTBE)	24,2	1.0	ug/l	25.0		97	55-145			
tert-Butanol (TBA)	119	25	ug/l	125		95	70-140			
Surrogate: Dibromofluoromethane	<i>28.2</i>		ug/l	25.0		113	80-120			
Surrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	28.2		ug/l	25.0		113	80-120			

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302 San Diego, CA 92108

Attention: Maurice Baron

Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

1 Td.	n14	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	Data Qualifiers
Analyte	Result	Timit	Umis	Level	Resuit	70 KEC	Limits	KPD	Limit	Quantiers
Batch: 4E23010 Extracted: 05/23/04										
Matrix Spike Analyzed: 05/23/04 (4E23	010-MS1)				Source: II	NE0949-0	4			
Benzene	21.6	0.50	ug/l	25.0	0.58	84	70-120			
Ethylbenzene	26.8	0.50	ug/l	25.0	2.1	99	70-125			7
Toluene	22.9	0.50	ug/l	25.0	ND	92	65-120			
o-Xylene	23.4	0.50	ug/l	25.0	ND	94	65-125			
m,p-Xylenes	47.2	1.0	ug/l	50.0	ND	94	60-125			
Xylenes, Total	70.6	1.5	ug/l	75.0	ND	94	60-135			
Di-isopropyl Ether (DIPE)	23.0	5.0	ug/l	25.0	ND	92	65-140			
Ethyl tert-Butyl Ether (ETBE)	22,2	5.0	ug/l	25.0	ND	89	60-140			
tert-Amyl Methyl Ether (TAME)	20.1	5.0	ug/l	25.0	ND	80	55-145			•
Methyl-tert-butyl Ether (MTBE)	20.7	1.0	ug/l	25.0	2,3	74	50-150			
tert-Butanol (TBA)	126	25	ug/I	125	ND	101	65-145			
Surrogate: Dibromofluoromethane	27.3		ug/l	25.0		109	80-120			
Surrogate: Toluene-d8	27.8		ug/l	25.0		111	80-120			
Surrogate: 4-Bromofluorobenzene	27.9		ug/l	25.0		112	80-120			
Matrix Spike Dup Analyzed: 05/23/04 (4E23010-MS	D1)			Source: I	NE0949-0	4			
Benzene	21.7	0.50	ug/l	25.0	0.58	84	70-120	1	20	
Ethylbenzene	25.8	0.50	ug/l	25.0	2.1	95	70-125	4	20	
Toluene	22.8	0,50	ug/l	25.0	ND	91	65-120	0	20	
o-Xylene	22.6	0.50	ug/l	25.0	ND	90	65-125	3	20	
m,p-Xylenes	45.4	1.0	ug/l	50.0	ND	91	60-125	4	25	
Xylenes, Total	68.0	1.5	ug/l	75.0	ND	91	60-135	4	20	
Di-isopropyl Ether (DIPE)	25.0	5.0	ug/l	25.0	ND	100	65-140	8	25	
Ethyl tert-Butyl Ether (ETBE)	26.0	5.0	ug/l	25.0	ND	104	60-140	16	25	
tert-Amyl Methyl Ether (TAME)	26.0	5.0	ug/l	25.0	ND	104	55-145	26	25	R
Methyl-tert-butyl Ether (MTBE)	27.9	1.0	ug/l	25.0	2.3	102	50-150	30	25	R
tert-Butanol (TBA)	120	25	ug/l	125	ND	96	65-145	5	25	•
Surrogate: Dibromofluoromethane	28.7		ug/l	25.0		115	80-120			
Surrogate: Toluene-d8	27.6		ug/l	25.0		110	80-12 0			
Surrogate: 4-Bromofluorobenzene	28. I		ug/l	25.0		112	80-120			

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E24016 Extracted: 05/24/04										
Blank Analyzed: 05/24/04 (4E24016-BI	LK1)									
Benzene	ND	0.50	ug/l							
Ethylbenzene ,	ND	0.50	ug/l							
Toluene	ND	0.50	ug/l							
o-Xylene	ND	0.50	ug/l							
m,p-Xylenes	ND	1.0	ug/l							
Xylenes, Total	ND	1.5	ug/l							
Di-isopropyl Ether (DIPE)	ND	5.0	ug/l							
Ethyl tert-Butyl Ether (ETBE)	ND	5.0	ug/l							
tert-Amyl Methyl Ether (TAME)	ND	5.0	ug/l							
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/I							
tert-Butanol (TBA)	ND	25	ug/l							
Surrogate: Dibromofluoromethane	24.2		ug/l	25,0		97	80-120			
Surrogate: Toluene-d8	24.9		ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	24.4		ug/l	25.0		<i>9</i> 8	80-120			
LCS Analyzed: 05/24/04 (4E24016-BS1)	•								
Benzene	25.1	0.50	ug/l	25.0		100	70-120			
Ethylbenzene	26.2	0.50	ug/l	25.0		105	80-120			
Toluene	25.4	0.50	ug/l	25.0		102	70-120			
o-Xylene	25.5	0.50	ug/l	25.0		102	75-125			
m,p-Xylenes	52.3	1.0	ug/l	50.0		105	70-120			
Xylenes, Total	77.8	1.5	ug/l	75.0		104	70-120			
Di-isopropyl Ether (DIPE)	24.6	5.0	ug/l	25.0		98	65-135			
Ethyl tert-Butyl Ether (ETBE)	24.2	5.0	ug/l	25.0		97	60-140			
tert-Amyl Methyl Ether (TAME)	24.7	5.0	ug/l	25.0		99	60-140			
Methyl-tert-butyl Ether (MTBE)	24.6	1.0	ug/l	25.0		98	55-145			M-3
tert-Butanol (TBA)	140	25	ug/l	125		112	70-140			
Surrogate: Dibromofluoromethane	25.3		ug/l	25.0		101	80-120			
Surrogate: Toluene-d8	25.I		ug/l	25.0		100	80-120			
Surrogate: 4-Bromofluorobenzene	25.0		ug/l	25.0		100	80-120			

Del Mar Analytical, Irvine Heather Bean For Chris Roberts

Project Manager

SECOR-San Diego/ChevronTexaco 2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04 Received: 05/17/04

METHOD BLANK/QC DATA

BTEX/OXYGENATES by GC/MS (EPA 8260B)

		Reporting		Spike	Source		%REC		RPD	Data
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
Batch: 4E24016 Extracted: 05/24/04	<u>l</u>									
Matrix Spike Analyzed: 05/24/04 (4	E24016-MS1)				Source: I	NE0949-0	1			
Benzene	25.2	0.50	ug/l	25.0	ND	101	70-120			
Ethylbenzene	26.0	0.50	ug/l	25.0	ND	104	70-125			
Toluene	25.6	0.50	ug/l	25.0	ND	102	65-120			
o-Xylene	26.0	0.50	ug/l	25.0	ND	104	65-125			
m,p-Xylenes	52.2	1.0	ug/l	50.0	ND	104	60-125			
Xylenes, Total	78.2	1.5	ug/l	75.0	ND	104	60-135			
Di-isopropyl Ether (DIPE)	25.6	5.0	ug/l	25.0	ND	102	65-140			
Ethyl tert-Butyl Ether (ETBE)	25.8	5.0	ug/l	25.0	ND	103	60-140			
tert-Amyl Methyl Ether (TAME)	28.1	5.0	ug/l	25.0	ND	112	55-145			
tert-Butanol (TBA)	255	25	ug/l	125	110	116	65-145			
Surrogate: Dibromofluoromethane	25.6		ug/l	25.0		102	80-120			
Surrogate: Toluene-d8	25.3		ug/l	25.0		101	80-120			
Surrogate: 4-Bromofluorobenzene	25.8		ug/l	25.0		103	80-120			
Matrix Spike Dup Analyzed: 05/24/0	04 (4E24016-MS)	D1)			Source: I	NE0949-0	1		-	
Benzene	25.8	0.50	ug/l	25.0	ND	103	70-120	2	20	
Ethylbenzene	26.7	0.50	ug/l	25.0	ND	107	70-125	3	20	
Toluene	26.3	0.50	ug/l	25.0	ND	105	65-120	3	20	
o-Xylene	26.4	0.50	ug/l	25.0	ND	106	65-125	2	20	
m,p-Xylenes	53.3	1.0	ug/l	50.0	ND	107	60-125	2	25	
Xylenes, Total	79.7	1.5	ug/l	75.0	ND	106	60-135	2	20	
Di-isopropyl Ether (DIPE)	26.6	5.0	ug/l	25.0	ND	106	65-140	4	25	
Ethyl tert-Butyl Ether (ETBE)	26.5	5.0	ug/l	25.0	ND	106	60-140	3	25	
tert-Amyl Methyl Ether (TAME)	28.6	5.0	ug/I	25.0	ND	114	55-145	2	25	
tert-Butanol (TBA)	268	25	ug/l	125	110	126	65-145	5	25	
Surrogate: Dibromofluoromethane	25.8		ug/l	25.0		103	80-120			
Surrogate: Toluene-d8	25,2		ug/l	25.0		101	<i>80-120</i>			
Surrogate: 4-Bromofluorobenzene	25.6		ug/l	25.0		102	80-120			

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

DATA QUALIFIERS AND DEFINITIONS

HS = Sample container contained headspace.

M1 The MS and/or MSD were above the acceptance limits due to sample matrix interference. See Blank Spike (LCS).

M-3 Results exceeded the linear range in the MS/MSD and therefore are not available for reporting. The batch was

accepted based on acceptable recovery in the Blank Spike (LCS).

R The RPD exceeded the method control limit due to sample matrix effects. The individual analyte QA/QC recoveries,

however, were within acceptance limits.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

RPD Relative Percent Difference

ADDITIONAL COMMENTS

For 8260 analyses:

Due to the high water solubility of alcohols and ketones, the calibration criteria for these compounds is <30% RSD. The average % RSD of all compounds in the calibration is 15%, in accordance with EPA methods.

For Volatile Fuel Hydrocarbons (C4-C12):

Volatile Fuel Hydrocarbons (C4-C12) are quantitated against a gasoline standard. Quantitation begins immediately before TBA-d9.

SECOR-San Diego/ChevronTexaco

2655 Camino del Rio North, Suite 302

San Diego, CA 92108 Attention: Maurice Baron Project ID: Chevron 9-2795

Report Number: INE0948

Sampled: 05/13/04

Received: 05/17/04

Certification Summary

Del Mar Analytical, Irvine

Method	Matrix	NELAP	CA
EPA 8260B	Water	X	X
TPH by GC/MS	Water	- X	X

NV and NELAP provide analyte specific accreditations. Analyte specific information for Del Mar Analytical may be obtained by contacting the laboratory or visiting our website at www.dmalabs.com.

INFORT

Temp. Blank Check Time Tem: COC Revision 9 - SECOR MT - SD.doc, 03/04 Special Instructions Notes/Comments Temp: Sample Integrity: (Check by lab on arrival) ÿ 1. | 1. o To 30 ·Other _ တ္တ On Ice: Turnaround Time: ANALYSES REQUIRED 48 hours Chevron Environmental Management Company ■ 145 S. State College Boulevard ■ Brea, CA 92822-2292 □ H9AT 1.814 A93 Intact: □ \$3\$A3YOIL/GREASES SM 2510B SPECIFIC CONDUCTIVITY [EPA 310.1 ALKALINITY [☐ HR 1.081 ARB 370 EPA 6010/7000 TITLE 22 METALS 🗆 TILC 🗆 STLC EPA 6010 CA, FE, K, MG, MN, NA (**2**-9-Hq) 80928 Aq∃ ☐ OVH S STANGENATES ☐ HVOC Ž DWAT Cet restato □ 38TM EPA 80158 GRO D DRO D OROD TPHAD HC SCREEN D CHAIN OF CUSTODY FORM arl Company Required? Preservation Chevron Consultant: SECOR International, Inc. Nes □ وعدول Address: 2301 Leghorn, Mountain View, CA 94043 Consultant Contact: Maurice Baron Consultant Project No. MTCH.92795.08 Consultant Phone No. (650) 691-0131 Cunningham Phone No: □ (717) 656-2300 Relinquished To Laboratories Containers ☐ Lancaster, PA Lab Contact: Relinquished T Relinquished Date/Time: Date/Time: Lancaster Sampled By (Print): Chris_ ф # ı Teresa Sampling Company: BTSI Container Type Sampler Signature: 1540 5 Phone No: (949) 261-1022 (909) 370-4667 ri X Irvine, CA Analytical Lab Contact: 111/34-Sample Del Mar Jate/Time: Date/Time: Date/Time: 1043 955 1523 809 1367 411/04 Time ISHU 011 5 1415 101 5/13/84 THIS IS A LEGAL DOCUMENT. ALL FIELDS MUST BE FILLED OUT CORRECTLY AND COMPLETELY. (yymmdd) 515070 Chevron Site Address: 6051 El Tordo, Rancho Santa Fe Date Chevron MT PM Phone No.: (650) 691-0131 x 235 El-Construction/Retail Job or El-Retail and Terminal Business Unit (RTBU) Job Chevron PM: SECOR; c/o Madelaine Montilla 2301 Leghorn, Mountain View, CA 94043 Chevron Service Code: **ZZ02800** X Management Transfer – SO CA Portfolio Job Top Depth DHKI Company (P) Chevron Site Global ID: TO607399173 SAMPLE ID ompany Company Matrix 3 MT Job No: MTCH.92795.08 Chevron Site Number Field Point Name m~ -9 8- NE 38 mw. 91- mu uished mm -5 mm -3 オペル 3- ME A 63 -

APPENDIX G

Benzene and TBA Concentration Versus Time Hydrographs

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\tildChevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

PNOChevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SP\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

P:\0Chevron\Sites\9-2795 El Tordo, Rancho SF\Reports\CAP drafts\9-2795 3-28-05 (SARCAP tables).xls

APPENDIX H

Remedial Alternatives Cost Estimate Spreadsheets

Appendix H
Remedial Action Alternatives Cost Estimates
Former Chevron Station 9-2795
6051 El Tordo, Rancho Santa Fe, California

Estimated Time To Complete	2 years.	Several decades.
Cost (Estimated)	osts: tt) sts: Total	Groundwater Monitor Well Abandonment Costs: \$50,000 Annual Costs: None Total Cost: \$50,000
Long-Term Environmental Risk Liability	Long-term liability is reduced because hydrocarbons are destroyed. Groundwater pumping, when used alone, is \$29,000 unlikely to achieve the target cleanup goal (WQO for benzene, Annual co 1.0 µg/L.; however, in combination \$116,000 with high vacuum dual phase axtraction, can be effective for remediating the smear zone within the vadose zone on and near (down-gradient) of the Site	Long-term environmental risk liability can be interpreted to be similar to that currently existing. Does achieve the target groundwater cleanup goal (WQO for benzene, 1.0 µg/L), over a period of several decades.
Effectiveness	Very effective for removing gasoline-locked gasoline in the thick vadose zone, if properly screened vapor extraction wells are used.	Effective for reducing dissolved phase gasoline plume in saturated aquifer media, as long as microbial populations can be sustained. Process stops when oxygen or other critical nutrients are depleted.
Permitting	Air emissions discharge permits for basin-wide use within the San Diego Basin have been obtained.	Well abandonment permitting is required. Traffic control plans will be needed for all off-site monitoring wells.
Contaminant Fate	Contaminant is removed from the exposed smear zone and from impacted groundwater. Vapors are thermally destroyed; total fluids (groundwater) are containerized for off-site transport to a TSDF.	Accepted, if low or acceptable risk to human harmless com-pounds through unenhanced natural groundwater resources exist. Otherwise, not accepted.
Regulatory Acceptance	Dual-Phase, High Vacuum Extraction Proven technology for gremediation Remediation System	Accepted, if low or acceptable risk to human health and potable groundwater resources exist. Otherwise, not accepted.
Alternatives	Dual-Phase, High Vacuum Extraction With Mobile Remediation System	Remediation by Natural Attenuation and No Futher Action

Notes:

TSDF = Treatment Storage and Disposal Facility

Appendix H Remediation Strategy Cost Estimate--

Remediation by Dual-Phase, High Vacuum Extraction With Mobile Remediation System Former Chevron 9-2795

6051 El Tordo, Rancho Santa Fe, California

Professional Fees:	
Associate	(8 hrs @ \$100.00/hr = \$800.00)
Project	(12 hrs @ \$90.00/hr = \$1,080.00)
Staff	(24 hrs @ \$78.00/hr = \$1,872.00)
Technician	(120 hrs @ \$55.00/hr @ 1 Technician = \$6,600.00)
Assistant	(15 hrs @ \$66.00/hr = \$990.00)
Total Professional Fees	\$11,342.00
SECOR Fees:	
Mileage	(60 Miles @ \$0.50/Mile = \$30.00)
Equipment and Supplies	(3 each @ \$400.00/EA = \$1,200.00)
Total SECOR Fees	\$1,230.00
Subcontractor Fees	
Mobile Remediation System	(1 event @ \$5,000/event = \$5,000.00)
Waste Disposal	(2,500 Gallons @ \$0.75/gallon = \$1,875.00)
Waste Profiling Sample Analysis	(7 Samples @ \$155.00/sample = \$1,085.00)
Air Sample Analysis	(10 Samples @ \$250.00/sample = \$2,500.00)
Traffic Control Plan/Equipment	\$2,500.00 lump sum
15% Mark-Up	\$1,944.00
Total Subcontractor Fees	\$14,904.00
Reporting Fees:	
Mobile Remediation System Report	\$1,000.00 lump sum
Total Reporting Fees	\$1,000.00
Sub Total Cost	\$28,476.00

NOTES:

¹⁾ Perform Mobile Remediation System activities for approximately 120 hours per event. 1 event per quarter for 2 years.

Remediation Strategy Cost Estimate--Remediation by Natural Attenuation Former Chevron 9-2795 6051 El Tordo, Rancho Santa Fe, California

\$49,852.00

Professional Fees: Associate	(20 hrs @ \$100.00/hr = \$2,000.00)
Project	(40 hrs @ \$90.00/hr = \$3,600.00)
Staff	(40 hrs @ \$78.00/hr = \$3,120.00)
Technician	(40 hrs @ \$55.00/hr @ 1 Technician = \$2,200.00)
Assistant	(20 hrs @ \$66.00/hr = \$1,320.00)
Total Professional Fees	\$12,240.00
SECOR Fees:	
Mileage	(500 Miles @ \$0.50/Mile = \$250.00)
Equipment and Supplies	(5 each @ \$400.00/EA = \$2,000.00)
Total SECOR Fees	\$2,250.00
Subcontractor Fees Well Destruction (drilling) Waste Drums	(290 LF @ \$42.00/LF = \$12,180.00) (40 Drums @ \$35.00/drum = \$1,400.00)
Waste Drum Disposal	(40 Drums @ \$100.00/drum = \$4,000.00)
Disposal of Misc. Well Debris	\$1,500.00 lump sum
Asphalt Patch	(8 patches @ \$150.00/patch = \$1,200.00)
Concrete Patch	(2 patches @ \$1,500/patch = \$3,000.00)
Waste Profiling Sample Analysis	(20 Samples @ \$155.00/sample = \$3,100.00)
Traffic Control Plan/Equipment	\$3,500.00 lump sum
15% Mark-Up	\$4,482.00
Total Subcontractor Fees	\$34,362.00
Reporting Fees:	44
Well Destruction Report	\$1,000.00 lump sum
Total Reporting Fees	\$1,000.00

NOTES:

Sub Total Cost

¹⁾ Perform well destruction activities for 10 wells at approximately 29 linear feet per well (e.g., 290 LF total). Work is anticipated to take 5 days.